An iterative decoding threshold analysis for terminated regular LDPC convolutional (LDPCC) codes is presented. Using density evolution techniques, the convergence behavior of an iterative belief propagation decoder is analyzed for the binary erasure channel and the AWGN channel with binary inputs. It is shown that for a terminated LDPCC code ensemble, the thresholds are better than for corresponding regular and irregular LDPC block codes.
Abstract-In this paper, we construct protograph-based spatially coupled low-density parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L, we obtain a flexible family of code ensembles with varying rates and frame lengths that can share the same encoding and decoding architecture for arbitrary L. We demonstrate that the resulting codes combine the best features of optimized irregular and regular codes in one design: capacity approaching iterative belief propagation (BP) decoding thresholds and linear growth of minimum distance with block length. In particular, we show that, for sufficiently large L, the BP thresholds on both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (AWGNC) saturate to a particular value significantly better than the BP decoding threshold and numerically indistinguishable from the optimal maximum aposteriori (MAP) decoding threshold of the uncoupled LDPC code. When all variable nodes in the coupled chain have degree greater than two, asymptotically the error probability converges at least doubly exponentially with decoding iterations and we obtain sequences of asymptotically good LDPC codes with fast convergence rates and BP thresholds close to the Shannon limit. Further, the gap to capacity decreases as the density of the graph increases, opening up a new way to construct capacity achieving codes on memoryless binary-input symmetric-output (MBS) channels with low-complexity BP decoding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.