Nanocomposite fibers produced via electrospinning have very large surface area by virtue of their nanometer diameter sizes thereby making them very attractive for various applications such as for adsorption of contaminants from wastewater. In this study, a highly adsorbing nanoparticle, iron-modified montmorillonite was used as filler in the nanocomposite. The effects of polymer solution and suspension properties such as polymer concentration, clay loading, and filler type on the electrospinning of the nanocomposite were investigated using a 2k factorial design of experiment. The types of montmorillonite used were zero valent iron-MMT (ZVIMMT) and iron (III)-MMT (FeMMT). It was found from the SEM images that finer fibers were generated from suspensions with lower polymer concentration in the solution specifically at 5 wt% and from suspensions with ZVIMMT particles as filler. However, a common defect in nanofibers called beads was also observed in the fibers produced from 5 wt% polymer concentration. TEM micrographs confirmed that the ZVIMMT fibers have smaller diameter than the FeMMT fibers. In addition, it was recognized that the layered structure of the clay is still intact after the electrospinning process. The XRD pattern of the fibers revealed that the clay particles were intercalated with the polymer molecules based on the calculated d-spacing. Furthermore, elemental analysis on the bead and string regions of the electrospun fibers confirmed the presence of polymer and montmorillonite particles in both regions.
This study presents a bench‐scale study on the dynamic removal of arsenic from wastewater by an adsorption membrane consisting of a polycaprolactone matrix with iron‐intercalated montmorillonite filler. A 2K factorial design of experiment was employed to study the effect of different adsorption parameters; namely, flow rate, initial influent concentration, and thickness of adsorbent sheets on breakthrough time. Longer breakthrough times were associated with low flow rates, low initial influent concentrations, and thick nanofiber membrane. The bed depth service time (BDST) approach was used to model adsorption kinetics. An empirical equation for predicting service time of the adsorbent membrane was obtained and was used to design the bench‐scale column. The performance of the adsorption column was accurately predicted by the BDST model. This practical, nanocomposite‐based adsorption column offers a promising alternative wastewater treatment for addressing arsenic contamination in water.
The release of arsenic to aqueous environment imposes threats to human health. Montmorillonite supported zero-valent iron (ZVI-MMT) is a material with capability of immobilizing arsenic from aqueous environment. The arsenic adsorption efficiency of ZVI-MMT was obtained. In addition, adsorption kinetics of arsenic contaminated water on the material was determined. Arsenic and iron content was quantified by an inductively coupled plasma mass spectrometer (ICP-MS), interplanar distance of the adsorbent was measured by x-ray diffractometer (XRD), and the morphology of the adsorbent was obtained from a transmission electron microscope (TEM). Isotherm data were analyzed using the Langmuir and Freundlich isotherms. The data fitted well to Langmuir isotherm with derived adsorption capacity of 20.1 mg/g. Kinetics data were analyzed using intra-particle model, Elovich equation, pseudo first-, and pseudo second-order models. Elovich equation and pseudo second-order equation fitted the experimental data with pseudo second-order rate constant of 61.2 x 10-4 g/mg-min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.