The reproduction number R and the growth rate r are critical epidemiological quantities. They are linked by generation intervals, the time between infection and onward transmission. Because generation intervals are difficult to observe, epidemiologists often substitute serial intervals, the time between symptom onset in successive links in a transmission chain. Recent studies suggest that such substitution biases estimates of R based on r. Here we explore how these intervals vary over the course of an epidemic, and the implications for R estimation. Forward-looking serial intervals, measuring time forward from symptom onset of an infector, correctly describe the renewal process of symptomatic cases and therefore reliably link R with r. In contrast, backward-looking intervals, which measure time backward, and intrinsic intervals, which neglect population-level dynamics, give incorrect R estimates. Forward-looking intervals are affected both by epidemic dynamics and by censoring, changing in complex ways over the course of an epidemic. We present a heuristic method for addressing biases that arise from neglecting changes in serial intervals. We apply the method to early (21 January to February 8, 2020) serial interval-based estimates of R for the COVID-19 outbreak in China outside Hubei province; using improperly defined serial intervals in this context biases estimates of initial R by up to a factor of 2.6. This study demonstrates the importance of early contact tracing efforts and provides a framework for reassessing generation intervals, serial intervals, and R estimates for COVID-19.
A novel coronavirus (SARS-CoV-2) emerged as a global threat in December 2019. As the epidemic progresses, disease modellers continue to focus on estimating the basic reproductive number R 0 —the average number of secondary cases caused by a primary case in an otherwise susceptible population. The modelling approaches and resulting estimates of R 0 during the beginning of the outbreak vary widely, despite relying on similar data sources. Here, we present a statistical framework for comparing and combining different estimates of R 0 across a wide range of models by decomposing the basic reproductive number into three key quantities: the exponential growth rate, the mean generation interval and the generation-interval dispersion. We apply our framework to early estimates of R 0 for the SARS-CoV-2 outbreak, showing that many R 0 estimates are overly confident. Our results emphasize the importance of propagating uncertainties in all components of R 0 , including the shape of the generation-interval distribution, in efforts to estimate R 0 at the outset of an epidemic.
BackgroundClustering time-series data into discrete groups can improve prediction and provide insight into the nature of underlying, unobservable states of the system. However, temporal variation in probabilities of group occupancy, or the rates at which individuals move between groups, can obscure such signals. We use finite mixture and hidden Markov models (HMMs), two standard clustering techniques, to model long-term hourly movement data from Florida panthers (Puma concolor coryi). Allowing for temporal heterogeneity in transition probabilities, a straightforward but little-used extension of the standard HMM framework, resolves some shortcomings of current models and clarifies the movement patterns of panthers.ResultsSimulations and analyses of panther data showed that model misspecification (omitting important sources of variation) can lead to overfitting/overestimating the underlying number of movement states. Models incorporating temporal heterogeneity identify fewer underlying states, and can make out-of-sample predictions that capture observed diurnal and autocorrelated movement patterns exhibited by Florida panthers.ConclusionIncorporating temporal heterogeneity improved goodness of fit and predictive capability as well as reducing the selected number of movement states closer to a biologically interpretable level, although there is further room for improvement here. Our results suggest that incorporating additional structure in statistical models of movement can allow more accurate assessment of appropriate model complexity.Electronic supplementary materialThe online version of this article (doi:10.1186/s40462-016-0093-6) contains supplementary material, which is available to authorized users.
Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.