Exosomes are nanovesicles released by a variety of cells and are detected in body fluids including blood. Recent studies have highlighted the critical application of exosomes as personalized targeted drug delivery vehicles and as reservoirs of disease biomarkers. While these research applications have created significant interest and can be translated into practice, the stability of exosomes needs to be assessed and exosome isolation protocols from blood plasma need to be optimized. To optimize methods to isolate exosomes from blood plasma, we performed a comparative evaluation of three exosome isolation techniques (differential centrifugation coupled with ultracentrifugation, epithelial cell adhesion molecule immunoaffinity pull-down, and OptiPrep(TM) density gradient separation) using normal human plasma. Based on MS, Western blotting and microscopy results, we found that the OptiPrep(TM) density gradient method was superior in isolating pure exosomal populations, devoid of highly abundant plasma proteins. In addition, we assessed the stability of exosomes in plasma over 90 days under various storage conditions. Western blotting analysis using the exosomal marker, TSG101, revealed that exosomes are stable for 90 days. Interestingly, in the context of cellular uptake, the isolated exosomes were able to fuse with target cells revealing that they were indeed biologically active.
Disassembly of apoptotic cells into smaller fragments (a form of extracellular vesicle called apoptotic bodies) can facilitate removal of apoptotic debris and intercellular communication. However, the mechanism underpinning this process is unclear. While observing monocytes undergoing apoptosis by time-lapse microscopy, we discovered a new type of membrane protrusion that resembles a ‘beads-on-a-string' structure. Strikingly, the ‘beads' are frequently sheared off the ‘string' to form apoptotic bodies. Generation of apoptotic bodies via this mechanism can facilitate a sorting process and results in the exclusion of nuclear contents from apoptotic bodies. Mechanistically, generation of ‘beads-on-a-string' protrusion is controlled by the level of actomyosin contraction and apoptopodia formation. Furthermore, in an unbiased drug screen, we identified the ability of sertraline (an antidepressant) to block the formation of ‘beads-on-a-string' protrusions and apoptotic bodies. These data uncover a new mechanism of apoptotic body formation in monocytes and also compounds that can modulate this process.
Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients.
Extracellular vesicles are signaling organelles that are released by many cell types and is highly conserved in both prokaryotes and eukaryotes. Based on the mechanism of biogenesis, these membranous vesicles can be classified as exosomes, shedding microvesicles and apoptotic blebs. It is becoming clearer that these extracellular vesicles mediate signal transduction in both autocrine and paracrine fashion by the transfer of proteins and RNA. Whilst the role of extracellular vesicles including exosomes in pathogenesis is well established, very little is known about their function in normal physiological conditions. Recent evidences allude that extracellular vesicles can mediate both protective and pathogenic effects depending on the precise state. In this review, we discuss the involvement of extracellular vesicle as mediators of signal transduction in neurodegenerative diseases and cancer. In addition, the role of extracellular vesicles in mediating Wnt and PI3K signaling pathways is also discussed. Additional findings on the involvement of extracellular vesicles in homeostasis and disease progression will promote a better biological understanding, advance future therapeutic and diagnostic applications.
Extracellular vesicles (EVs) are membranous vesicles that are released by cells. In this study, the role of the Endosomal Sorting Complex Required for Transport (ESCRT) machinery in the biogenesis of yeast EVs was examined. Knockout of components of the ESCRT machinery altered the morphology and size of EVs as well as decreased the abundance of EVs. In contrast, strains with deletions in cell wall biosynthesis genes, produced more EVs than wildtype. Proteomic analysis highlighted the depletion of ESCRT components and enrichment of cell wall remodelling enzymes, glucan synthase subunit Fks1 and chitin synthase Chs3, in yeast EVs. Interestingly, EVs containing Fks1 and Chs3 rescued the yeast cells from antifungal molecules. However, EVs from fks1 ∆ or chs3 ∆ or the vps23 ∆ chs3 ∆ double knockout strain were unable to rescue the yeast cells as compared to vps23 ∆ EVs. Overall, we have identified a potential role for yeast EVs in cell wall remodelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.