This paper summarizes the results of the process optimization for SU-8 films with thicknesses 5 μm. The influence of soft-bake conditions, exposure dose and post-exposure-bake parameters on residual film stress, structural stability and lithographic resolution was investigated. Conventionally, the SU-8 is soft-baked after spin coating to remove the solvent. After the exposure, a post-exposure bake at a high temperature T PEB 90 • C is required to cross-link the resist. However, for thin SU-8 films this often results in cracking or delamination due to residual film stress. The approach of the process optimization is to keep a considerable amount of the solvent in the SU-8 before exposure to facilitate photo-acid diffusion and to increase the mobility of the monomers. The experiments demonstrate that a replacement of the soft-bake by a short solvent evaporation time at ambient temperature allows cross-linking of the thin SU-8 films even at a low T PEB = 50 • C. Fourier-transform infrared spectroscopy is used to confirm the increased cross-linking density. The low thermal stress due to the reduced T PEB and the improved structural stability result in crack-free structures and solve the issue of delamination. The knowledge of the influence of different processing parameters on the responses allows the design of optimized processes for thin SU-8 films depending on the specific application.
Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show examples of different integrated read-out methods and their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity to changes in the environmental temperature and pH of the buffer solution. Moreover, we show that the SU-8 cantilever surface can be functionalised directly with receptor molecules for analyte detection, thereby avoiding gold-thiol chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.