We herein describe a systematic account of mononuclear ruthenium vinyl complexes L-{Ru}-CH=CH-R where the phosphine ligands at the (PR'3)2Ru(CO)Cl={Ru} moiety, the coordination number at the metal (L = 4-ethylisonicotinate or a vacant coordination site) and the substituent R (R = nbutyl, phenyl, 1-pyrenyl) have been varied. Structures of the enynyl complex Ru(CO)Cl(PPh3)2(eta1:eta2-nBuHC=CHCCnBu), which results from the coupling of the hexenyl ligand of complex 1a with another molecule of 1-hexyne, of the hexenyl complexes (nBuCH=CH)Ru(CO)Cl(PiPr3)2 (1c) and (nBuCH=CH)Ru(CO)Cl(PPh3)2(NC5H4COOEt-4) (1b), and of the pyrenyl complexes (1-Pyr-CH=CH)Ru(CO)Cl(PiPr3)2 (3c) and (1-Pyr-CH=CH)Ru(CO)Cl(PPh3)3 (3a-P) have been established by X-ray crystallography. All vinyl complexes undergo a one-electron oxidation at fairly low potentials and a second oxidation at more positive potentials. Anodic half-wave or peak potentials show a progressive shift to lower values as pi-conjugation within the vinyl ligand increases. Carbonyl band shifts of the metal-bonded CO ligand upon monooxidation are significantly smaller than is expected of a metal-centered oxidation process and are further diminished as the vinyl CH=CH entity is incorporated into a more extended pi-system. ESR spectra of the electrogenerated radical cations display negligible g-value anisotropies and small deviations of the average g-value from that of the free electron. The vinyl ligands thus strongly contribute to or even dominate the anodic oxidation processes. This renders them a class of truly "non-innocent" ligands in organometallic ruthenium chemistry. Experimental findings are fully supported by quantum chemical calculations: The contribution of the vinyl ligand to the HOMO increases from 46% (Ru-vinyl delocalized) to 84% (vinyl dominated) as R changes from nbutyl to 1-pyrenyl.
Regio- and stereoselective insertion of the terminal ethynyl functions of 4-ethynylstilbene, the E and Z isomers of 4,4'-bis(ethynylphenyl)ethene and a backbone-rigidified cyclohexenyl derivative of the Z isomer into the Ru-H bond of the complex RuClH(CO)(P(i)Pr(3))(2) provides the corresponding vinyl ruthenium complexes, which have been characterized spectroscopically and by X-ray crystallography. Large red shifts of the UV/vis absorption bands evidence efficient incorporation of the vinyl metal subunit(s) into the conjugated π-system. All complexes oxidize at low potentials. The various oxidized forms of all complexes were generated and characterized by UV/vis/NIR, IR and EPR spectroscopies. These studies indicated electrocatalytic Z→E isomerization of the oxidized Z-distyrylethene complex Ru-Z2, which is prevented in its backbone-rigidified derivative Ru-Z2fix. The radical cations of the E and the configurationally stable cyclohexene-bridged Z-derivatives are spin-delocalized on the EPR time scale but charge-localized on the faster IR time scale. The degree of ground-state charge delocalization in the mixed-valent state has been quantified by the incremental shifts of the Ru-CO bands upon stepwise oxidation to the radical cations and the dications and was found to be remarkably large (19% and 9%) considering redox splittings ΔE(1/2) of just 49 or 74 mV. Quantum chemical studies with various levels of sophistication reproduce our experimental results including the electronic spectra of the neutral complexes and the intrinsically localized nature of the radical cations of the dinuclear complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.