BackgroundThe Cronobacter genus (Enterobacter sakazakii) has come to prominence due to its association with infant infections, and the ingestion of contaminated reconstituted infant formula. C. sakazakii and C. malonaticus are closely related, and are defined according their biotype. Due to the ubiquitous nature of the organism, and the high severity of infection for the immunocompromised, a multilocus sequence typing (MLST) scheme has been developed for the fast and reliable identification and discrimination of C. sakazakii and C. malonaticus strains. It was applied to 60 strains of C. sakazakii and 16 strains of C. malonaticus, including the index strains used to define the biotypes. The strains were from clinical and non-clinical sources between 1951 and 2008 in USA, Canada, Europe, New Zealand and the Far East.ResultsThis scheme uses 7 loci; atpD, fusA, glnS, gltB, gyrB, infB, and pps. There were 12 sequence types (ST) identified in C. sakazakii, and 3 in C. malonaticus. A third (22/60) of C. sakazakii strains were in ST4, which had almost equal numbers of clinical and infant formula isolates from 1951 to 2008. ST8 may represent a particularly virulent grouping of C. sakazakii as 7/8 strains were clinical in origin which had been isolated between 1977 - 2006, from four countries. C. malonaticus divided into three STs. The previous Cronobacter biotyping scheme did not clearly correspond with STs nor with species.ConclusionIn conclusion, MLST is a more robust means of identifying and discriminating between C. sakazakii and C. malonaticus than biotyping. The MLST database for these organisms is available online at http://pubmlst.org/cronobacter/.
BackgroundThe objective of this study was to determine whether neonatal nasogastric enteral feeding tubes are colonised by the opportunistic pathogen Cronobacter spp. (Enterobacter sakazakii) and other Enterobacteriaceae, and whether their presence was influenced by the feeding regime.MethodsOne hundred and twenty-nine tubes were collected from two neonatal intensive care units (NICU). A questionnaire on feeding regime was completed with each sample. Enterobacteriaceae present in the tubes were identified using conventional and molecular methods, and their antibiograms determined.ResultsThe neonates were fed breast milk (16%), fortified breast milk (28%), ready to feed formula (20%), reconstituted powdered infant formula (PIF, 6%), or a mixture of these (21%). Eight percent of tubes were received from neonates who were 'nil by mouth'. Organisms were isolated from 76% of enteral feeding tubes as a biofilm (up to 107 cfu/tube from neonates fed fortified breast milk and reconstituted PIF) and in the residual lumen liquid (up to 107 Enterobacteriaceae cfu/ml, average volume 250 μl). The most common isolates were Enterobacter cancerogenus (41%), Serratia marcescens (36%), E. hormaechei (33%), Escherichia coli (29%), Klebsiella pneumoniae (25%), Raoultella terrigena (10%), and S. liquefaciens (12%). Other organisms isolated included C. sakazakii (2%),Yersinia enterocolitica (1%),Citrobacter freundii (1%), E. vulneris (1%), Pseudomonas fluorescens (1%), and P. luteola (1%). The enteral feeding tubes were in place between < 6 h (22%) to > 48 h (13%). All the S. marcescens isolates from the enteral feeding tubes were resistant to amoxicillin and co-amoxiclav. Of additional importance was that a quarter of E. hormaechei isolates were resistant to the 3rd generation cephalosporins ceftazidime and cefotaxime. During the period of the study, K. pneumoniae and S. marcescens caused infections in the two NICUs.ConclusionThis study shows that neonatal enteral feeding tubes, irrespective of feeding regime, act as loci for the bacterial attachment and multiplication of numerous opportunistic pathogens within the Enterobacteriaceae family. Subsequently, these organisms will enter the stomach as a bolus with each feed. Therefore, enteral feeding tubes are an important risk factor to consider with respect to neonatal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.