Collaborative Knowledge Graph platforms allow humans and automated scripts to collaborate in creating, updating and interlinking entities and facts. To ensure both the completeness of the data as well as a uniform coverage of the different topics, it is crucial to identify underrepresented classes in the Knowledge Graph. In this paper, we tackle this problem by developing statistical techniques for class cardinality estimation in collaborative Knowledge Graph platforms. Our method is able to estimate the completeness of a class-as defined by a schema or ontology-hence can be used to answer questions such as "Does the knowledge base have a complete list of all {Beer Brands-Volcanos-Video Game Consoles}?" As a use-case, we focus on Wikidata, which poses unique challenges in terms of the size of its ontology, the number of users actively populating its graph, and its extremely dynamic nature. Our techniques are derived from species estimation and data-management methodologies, and are applied to the case of graphs and collaborative editing. In our empirical evaluation, we observe that i) the number and frequency of unique class instances drastically influence the performance of an estimator, ii) bursts of inserts cause some estimators to overestimate the true size of the class if they are not properly handled, and iii) one can effectively measure the convergence of a class towards its true size by considering the stability of an estimator against the number of available instances.
Wikidata is rapidly emerging as a key resource for a multitude of online tasks such as Speech Recognition, Entity Linking, Question Answering, or Semantic Search. The value of Wikidata is directly linked to the rich information associated with each entity -that is, the properties describing each entity as well as the relationships to other entities. Despite the tremendous manual and automatic efforts the community invested in the Wikidata project, the growing number of entities (now more than 100 million) presents multiple challenges in terms of knowledge gaps in the graph that are hard to track. To help guide the community in filling the gaps in Wikidata, we propose to identify and rank the properties that an entity might be missing. In this work, we focus on entities with a dedicated Wikipedia page in any language to make predictions directly based on textual content. We show that this problem can be formulated as a multi-label classification problem where every property defined in Wikidata is a potential label. Our main contribution, Wiki2Prop, solves this problem using a multimodal Deep Learning method to predict which properties should be attached to a given entity, using its Wikipedia page embeddings. Moreover, Wiki2Prop is able to incorporate additional features in the form of multilingual embeddings and multimodal data such as images whenever available. We empirically evaluate our approach against the state of the art and show how Wiki2Prop significantly outperforms its competitors for the task of property prediction in Wikidata, and how the use of multilingual and multimodal data improves the results further. Finally, we make Wiki2Prop available as a property recommender system that can be activated and used directly in the context of a Wikidata entity page. CCS CONCEPTS• Human-centered computing → Wikis; • Information systems → Incomplete data; Network data models; • Computing methodologies → Supervised learning.This paper is published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their personal and corporate Web sites with the appropriate attribution.
• Visualizing Linked Data • Visualizing RDF Data • Automated creation of Infographics Definition Visualizing Semantic Data describes the task of using the additional self describing features of semantic data (Linked Data / RDF) to inform the process of creating vector or bitmap drawings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.