A set of phosphatases was evaluated for their potential to catalyze the regio‐ and stereoselective phosphorylation of alcohols using a high‐energy inorganic phosphate donor, such as di‐, tri‐ and polyphosphate. Parameters such as type and amount of phosphate donor and pH of the reaction were investigated in order to minimize the thermodynamically favored hydrolysis of the phosphate donor and the formed phosphate ester. Diols were monophosphorylated with high selectivities. This biocatalytic phosphorylation method provides selectively activated and/or protected synthetic intermediates for further chemical and/or enzymatic transformations and is applicable to a large scale (6.86 g) in a flow setup with immobilized phosphatase.
The enzyme 4-oxalocrotonate tautomerase shows remarkable catalytic versatility due to the secondary amine of its N-terminal proline moiety. In this work, we incorporated a range of proline analogues into the enzyme and examined the effects on structure and activity. While the structure of the enzyme remained unperturbed, its promiscuous Michael-type activity was severely affected. This finding demonstrates how atomic changes in a biocatalytic system can abolish its activity. Our work provides a toolbox for successful generation of enzyme variants with non-canonical catalytic proline analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.