Fe III -O 2 •− intermediates are well known in heme enzymes, but none have been characterized in the nonheme mononuclear Fe II enzyme family. Many steps in the O 2 activation and reaction cycle of Fe II -containing homoprotocatechuate 2,3-dioxygenase are made detectable by using the alternative substrate 4-nitrocatechol (4NC) and mutation of the active site His200 to Asn (H200N). Here, the first intermediate (Int-1) observed after adding O 2 to the H200N-4NC complex is trapped and characterized using EPR and Möss-bauer (MB) spectroscopies. Int-1 is a high-spin ( (1)(2)(3)(4)(5)(6)(7)(8). Internal electron transfer to form an Fe III -superoxo species converts the kinetically inert triplet ground state of O 2 to a doublet that can participate in the many types of chemistry characteristic of this mechanistically diverse group of enzymes. The same strategy is usually employed by heme-containing oxygenases and oxidases, leading in some cases to comparatively stable Fe III -superoxo intermediates that have been structurally and spectroscopically characterized (9-12). Instability of the putative superoxo intermediate in all mononuclear nonheme iron-containing enzymes has prevented similar characterization, although a superoxide level species has been reported for the dinuclear iron site of myo-inositol oxygenase (13).In recent studies of the nonheme Fe II -containing homoprotocatechuate 2,3-dioxygenase (2,3-HPCD), we have shown that three intermediates of the catalytic cycle can be trapped in one crystal for structural analysis (14). One of these intermediates has been proposed to be an Fe II -superoxo species based on the long Fe-O bond distances and an unexpected lack of planarity of the aromatic ring of the alternative substrate 4-nitrocatechol (4NC), which chelates the iron in ligand sites adjacent to that of the O 2 . In accord with the mechanism postulated for this enzyme class as illustrated in Scheme 1 (1, 8, 15-21), we have proposed that net electron transfer from 4NC through the Fe II to O 2 forms adjacent substrate and oxygen radicals (Scheme 1B). Recombination of the radicals would begin the ring cleavage and oxygen insertion reactions of this enzyme that eventually yield a muconic semialdehyde adduct as the product. A localized radical on the 4NC semiquinone at the incipient position of oxygen attack would account for the lack of ring planarity. Although this is the only structurally characterized nonheme Fe-superoxo species, the iron oxidation state differs from all of the other postulated Fe-superoxo intermediates.The mechanism that emerges from the structural and kinetic studies does not require a change in metal oxidation state to form a reactive intermediate (22). However, our studies of 2,3-HPCD in which Fe II is replaced with Mn II suggest that transient formaScheme 1. Proposed mechanism for extradiol dioxygenases. In the case of 2,3-HPCD, R is −CH 2 COO − and B is His200. When R is −NO 2 and His200 is changed to Asn, the reaction stalls before reaching intermediate C. Peroxide is slowly released a...
Substrates homoprotocatechuate (HPCA) and O2 bind to the FeII of Homoprotocatechuate 2,3-dioxygenase (FeHPCD) in adjacent coordination sites. Transfer of an electron(s) from HPCA to O2 via the iron is proposed to activate the substrates for reaction with each other to initiate aromatic ring cleavage. Here, rapid-freeze-quench methods are used to trap and spectroscopically characterize intermediates in the reactions of the HPCA complexes of FeHPCD and the variant His200Asn (FeHPCD-HPCA and H200N-HPCA) with O2. A blue intermediate forms within 20 ms after mixing O2 with H200N-HPCA (H200NInt1HPCA). Parallel mode EPR and Mössbauer spectroscopies show that this intermediate contains high-spin FeIII (S=5/2) antiferromagnetically coupled to a radical (SR=1/2) to yield an S=2 state. Together, optical and Mössbauer spectra of the intermediate support assignment of the radical as an HPCA semiquinone, implying that oxygen is bound as a (hydro)peroxo ligand. H200NInt1HPCA decays over the next 2 s, possibly through an FeII intermediate (H200NInt2HPCA), to yield product and the resting FeII enzyme. Reaction of FeHPCD-HPCA with O2 results in rapid formation of a colorless FeII intermediate (FeHPCDInt1HPCA). This species decays within 1 s to yield the product and the resting enzyme. The absence of a chromophore from a semiquinone or evidence for a spin-coupled species in FeHPCDInt1HPCA suggests it is an intermediate occurring after O2 activation and attack. The similar Mössbauer parameters for FeHPCDInt1HPCA and H200NInt2HPCA suggest these are similar intermediates. The results show that electron transfer from the substrate to the O2 via the iron does occur leading to aromatic ring cleavage.
Stilbenes are diphenyl ethene compounds produced naturally in a wide variety of plant species and some bacteria. Stilbenes are also derived from lignin during kraft pulping. Stilbene cleavage oxygenases (SCOs) cleave the central double bond of stilbenes, forming two phenolic aldehydes. Here, we report the structure of an SCO. The X-ray structure of NOV1 from Novosphingobium aromaticivorans was determined in complex with its substrate resveratrol (1.89 Å), its product vanillin (1.75 Å), and without any bound ligand (1.61 Å). The enzyme is a seven-bladed β-propeller with an iron cofactor coordinated by four histidines. In all three structures, dioxygen is observed bound to the iron in a side-on fashion. These structures, along with EPR analysis, allow us to propose a mechanism in which a ferric-superoxide reacts with substrate activated by deprotonation of a phenol group at position 4 of the substrate, which allows movement of electron density toward the central double bond and thus facilitates reaction with the ferric superoxide electrophile. Correspondingly, NOV1 cleaves a wide range of other stilbene-like compounds with a 4′-OH group, offering potential in processing some solubilized fragments of lignin into monomer aromatic compounds.tilbenes are diphenyl ethene compounds that are produced naturally in a wide variety of plant species and some bacteria. One stilbene derivative of note is resveratrol, which is a plant phytoalexin abundant in grapes and peanuts. Studies have demonstrated numerous health benefits related to the consumption of resveratrol, which is correlated with reduced cardiovascular disease and cancer (1). Lignostilbene α,β-dioxygenase (LSD, EC 1.13.11.43), originally observed in Sphingomonas paucimobilis, was the first enzyme shown to cleave the central double bond of stilbenes, forming two phenolic aldehydes (2, 3). Subsequently, NOV1 and NOV2 (4) from Novosphingobium aromaticivorans, Rco1 (5) from Ustilago maydis, and CAO-1 (6) from Neurospora crassa were also shown to be stilbene cleaving oxygenases (SCOs). SCOs are related to carotenoid cleavage oxygenases (CCOs), which are enzymes that oxidatively cleave β-carotene or apocarotenoids. Carotenoids are a diverse class of molecules that play important roles in photosynthesis, immune function, and light perception in the eye. CCOs have been studied in great detail, including several crystal structures (7-9).Here, we present the X-ray structure of an SCO, NOV1 from N. aromaticivorans (NOV1). The structure was determined in complex with a representative substrate (resveratrol), a representative product (vanillin), and without ligand bound. We have also observed the ternary complex with oxygen and substrate or product bound, which has not been previously detected in a crystal structure of any CCO-related enzyme. Despite being related to CCOs, this structure of NOV1 shows several key differences that are indicative of their disparate substrate specificities. Moreover, the observed placement of Fe, O 2 , and the phenolic substrate resveratrol in th...
Homoprotocatechuate (HPCA; 3,4-dihydroxyphenylacetate or 4-carboxymethyl catechol) and O2 bind in adjacent ligand sites of the active site FeII of Homoprotocatechuate 2,3-Dioxygenase (FeHPCD). We have proposed that electron transfer from the chelated aromatic substrate through the FeII to O2 gives both substrates radical character. This would promote reaction between the substrates to form an alkylperoxo intermediate as the first step in aromatic ring cleavage. Several active site amino acids are thought to promote these reactions through acid/base chemistry, hydrogen bonding, and electrostatic interactions. Here the role of Tyr257 is explored by using the Tyr257Phe (Y257F) variant, which decreases kcat by about 75%. The crystal structure of the FeHPCD-HPCA complex has shown that Tyr257 hydrogen bonds to the deprotonated C2-hydroxyl of HPCA. Stopped-flow studies show that at least two reaction intermediates, termed Y257FInt1HPCA and Y257FInt2HPCA, accumulate during the Y257F-HPCA + O2 reaction prior to formation of the ring-cleaved product. Y257FInt1HPCA is colorless and is formed as O2 binds reversibly to the HPCA-enzyme complex. Y257FInt2HPCA forms spontaneously from Y257FInt1HPCA and displays a chromophore at 425 nm (ε425 = 10,500 M-1 cm−1). Mössbauer spectra of the intermediates trapped by rapid freeze quench show that both intermediates contain FeII. The lack of a chromophore characteristic of a quinone or semiquinone form of HPCA, the presence of FeII, and the low O2 affinity suggests that Y257FInt1HPCA is an HPCA-FeII-O2 complex with little electron delocalization onto the O2. In contrast, the intense spectrum of Y257FInt2HPCA suggests the intermediate is most likely an HPCA quinone-FeII-(hydro)peroxo species. Steady-state and transient kinetic analyses show that steps of the catalytic cycle are slowed by as much as 100-fold by the mutation. These effects can be rationalized by a failure of Y257F to facilitate the observed distortion of the bound HPCA that is proposed to promote transfer of one electron to O2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.