Over the past half-century, community health workers (CHWs) have been a growing force for extending health care and improving the health of populations. Following their introduction in the 1970s, many large-scale CHW programs declined during the 1980s, but CHW programs throughout the world more recently have seen marked growth. Research and evaluations conducted predominantly during the past two decades offer compelling evidence that CHWs are critical for helping health systems achieve their potential, regardless of a country's level of development. In low-income countries, CHWs can make major improvements in health priority areas, including reducing childhood undernutrition, improving maternal and child health, expanding access to family-planning services, and contributing to the control of HIV, malaria, and tuberculosis infections. In many middle-income countries, most notably Brazil, CHWs are key members of the health team and essential for the provision of primary health care and health promotion. In the United States, evidence indicates that CHWs can contribute to reducing the disease burden by participating in the management of hypertension, in the reduction of cardiovascular risk factors, in diabetes control, in the management of HIV infection, and in cancer screening, particularly with hard-to-reach subpopulations. This review highlights the history of CHW programs around the world and their growing importance in achieving health for all.
Three direct numerical simulations of incompressible turbulent plane mixing layers have been performed. All the simulations were initialized with the same two velocity fields obtained from a direct numerical simulation of a turbulent boundary layer with a momentum thickness Reynolds number of 300 computed by Spalart [J. Fluid Mech. 187, 61 (1988)]. In addition to a baseline case with no additional disturbances, two simulations were begun with two-dimensional disturbances of varying strength in addition to the boundary layer turbulence. After a development stage, the baseline case and the case with weaker additional two-dimensional disturbances evolve self-similarly, reaching visual thickness Reynolds numbers of up to 20 000. This self-similar period is characterized by a lack of large-scale organized pairings, a lack of streamwise vortices in the ‘‘braid’’ regions, and scalar mixing that is characterized by ‘‘marching’’ probability density functions (PDFs). The case begun with strong additional two-dimensional disturbances only becomes approximately self-similar, but exhibits sustained organized large-scale pairings, clearly defined braid regions with streamwise vortices that span them, and scalar PDFs that are ‘‘nonmarching.’’ It is also characterized by much more intense vertical velocity fluctuations than the other two cases. The statistics and structures in several experiments involving turbulent mixing layers are in better agreement with those of the simulations that do not exhibit organized pairings. .
The velocity fields of a turbulent wake behind a flat plate obtained from the direct numerical simulations of Moser et al. (1998) are used to study the structure of the flow in the intermittent zone where there are, alternately, regions of fully turbulent flow and non-turbulent velocity fluctuations on either side of a thin randomly moving interface. Comparisons are made with a wake that is ‘forced’ by amplifying initial velocity fluctuations. A temperature field T, with constant values of 1.0 and 0 above and below the wake, is transported across the wake as a passive scalar. The value of the Reynolds number based on the centreplane mean velocity defect and half-width b of the wake is Re ≈ 2000.The thickness of the continuous interface is about 0.07b, whereas the amplitude of fluctuations of the instantaneous interface displacement yI(t) is an order of magnitude larger, being about 0.5b. This explains why the mean statistics of vorticity in the intermittent zone can be calculated in terms of the probability distribution of yI and the instantaneous discontinuity in vorticity across the interface. When plotted as functions of y−yI the conditional mean velocity 〈U〉 and temperature 〈T〉 profiles show sharp jumps at the interface adjacent to a thick zone where 〈U〉 and 〈T〉 vary much more slowly.Statistics for the conditional vorticity and velocity variances, available in such detail only from DNS data, show how streamwise and spanwise components of vorticity are generated by vortex stretching in the bulges of the interface. While mean Reynolds stresses (in the fixed reference frame) decrease gradually in the intermittent zone, conditional stresses are roughly constant and then decrease sharply towards zero at the interface. Flow fields around the interface, analysed in terms of the local streamline pattern, confirm and explain previous results that the advancement of the vortical interface into the irrotational flow is driven by large-scale eddy motion.Terms used in one-point turbulence models are evaluated both conventionally and conditionally in the interface region, and the current practice in statistical models of approximating entrainment by a diffusion process is assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.