Syndromic surveillance refers to methods relying on detection of individual and population health indicators that are discernible before confirmed diagnoses are made. In particular, prior to the laboratory confirmation of an infectious disease, ill persons may exhibit behavioral patterns, symptoms, signs, or laboratory findings that can be tracked through a variety of data sources. Syndromic surveillance systems are being developed locally, regionally, and nationally. The efforts have been largely directed at facilitating the early detection of a covert bioterrorist attack, but the technology may also be useful for general public health, clinical medicine, quality improvement, patient safety, and research. This report, authored by developers and methodologists involved in the design and deployment of the first wave of syndromic surveillance systems, is intended to serve as a guide for informaticians, public health managers, and practitioners who are currently planning deployment of such systems in their regions.
Data in computer-based patient records (CPRs) have many uses beyond their primary role in patient care, including research and health-system management. Although the accuracy of CPR data directly affects these applications, there has been only sporadic interest in, and no previous review of, data accuracy in CPRs. This paper reviews the published studies of data accuracy in CPRs. These studies report highly variable levels of accuracy. This variability stems from differences in study design, in types of data studied, and in the CPRs themselves. These differences confound interpretation of this literature. We conclude that our knowledge of data accuracy in CPRs is not commensurate with its importance and further studies are needed. We propose methodological guidelines for studying accuracy that address shortcomings of the current literature. As CPR data are used increasingly for research, methods used in research databases to continuously monitor and improve accuracy should be applied to CPRs.
This report describes the design and implementation of the Real-time Outbreak and Disease Surveillance (RODS) system, a computer-based public health surveillance system for early detection of disease outbreaks. Hospitals send RODS data from clinical encounters over virtual private networks and leased lines using the Health Level 7 (HL7) message protocol. The data are sent in real time. RODS automatically classifies the registration chief complaint from the visit into one of seven syndrome categories using Bayesian classifiers. It stores the data in a relational database, aggregates the data for analysis using data warehousing techniques, applies univariate and multivariate statistical detection algorithms to the data, and alerts users of when the algorithms identify anomalous patterns in the syndrome counts. RODS also has a Web-based user interface that supports temporal and spatial analyses. RODS processes sales of over-the-counter health care products in a similar manner but receives such data in batch mode on a daily basis. RODS was used during the 2002 Winter Olympics and currently operates in two states-Pennsylvania and Utah. It has been and continues to be a resource for implementing, evaluating, and applying new methods of public health surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.