The pleiotropic lipid mediator sphingosine-1-phosphate (S1P) can act intracellularly independently of its cell surface receptors through unknown mechanisms. Sphingosine kinase 2 (SphK2), one of the isoenzymes that generates S1P, was associated with histone H3 and produced S1P that regulated histone acetylation. S1P specifically bound to the histone deacetylases HDAC1 and HDAC2 and inhibited their enzymatic activity, preventing the removal of acetyl groups from lysine residues within histone tails. SphK2 associated with HDAC1 and HDAC2 in repressor complexes and was selectively enriched at the promoters of the genes encoding the cyclin-dependent kinase inhibitor p21 or the transcriptional regulator c-fos, where it enhanced local histone H3 acetylation and transcription. Thus, HDACs are direct intracellular targets of S1P and link nuclear S1P to epigenetic regulation of gene expression.
Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes. Progress in our understanding of sphingolipid metabolism, state-of-the-art sphingolipidomic approaches and animal models have generated a large body of evidence demonstrating that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate, are signalling molecules that regulate a diverse range of cellular processes that are important in immunity, inflammation and inflammatory disorders. Recent insights into the molecular mechanisms of action of sphingolipid metabolites and new perspectives on their roles in regulating chronic inflammation have been reported. The knowledge gained in this emerging field will aid in the development of new therapeutic options for inflammatory disorders.
The bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P), is now recognized as a critical regulator of many physiological and pathophysiological processes, including cancer, atherosclerosis, diabetes and osteoporosis. S1P is produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2. Many cells secrete S1P, which can then act in an autocrine or paracrine manner. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. More recently, it was shown that S1P also has important intracellular targets involved in inflammation, cancer and Alzheimer’s disease. This suggests that S1P actions are much more complex than previously thought, with important ramifications for development of therapeutics. This review highlights recent advances in our understanding of mechanisms of action of S1P and its roles in disease.
TNF receptor-associated factor 2 (TRAF2) is a key component in NF-κB signaling triggered by TNF–α 1,2. Genetic evidence indicates that TRAF2 is necessary for polyubiquitination of receptor interacting protein 1 (RIP1) 3 that then serves as a platform for recruitment and stimulation of IκB kinase (IKK) leading to activation of the transcription factor NF-κB. Although TRAF2 is a RING domain ubiquitin ligase, direct evidence that TRAF2 catalyzes the ubiquitination of RIP1 is lacking. TRAF2 binds to sphingosine kinase 1 (SphK1) 4, one of the isoenzymes that generates the pro-survival lipid mediator sphingosine-1-phosphate (S1P) inside cells. Here we show that SphK1 and production of S1P is necessary for Lys 63-linked polyubiquitination of RIP1, phosphorylation of IKK and IκBα, and IκBα degradation, leading to NF-κB activation. Surprisingly, these responses were mediated by intracellular S1P independently of its cell surface G protein-coupled receptors. S1P specifically binds to TRAF2 at the N-terminal RING domain and stimulates its E3 ligase activity. S1P, but not dihydro-S1P, dramatically increased recombinant TRAF2-catalyzed Lys 63- but not Lys 48-linked polyubiquitination of RIP1 in vitro in the presence of the ubiquitin conjugating enzymes (E2) UbcH13 or UbcH5a. Our data reveal that TRAF2 is a novel intracellular target of S1P, and that S1P is the missing co-factor for TRAF2 E3 ubiquitin ligase activity, suggesting a new paradigm for regulation of Lys 63-linked polyubiquitination. These results also highlight the key role of SphK1 and its product S1P in TNF-α signaling and the canonical NF-κB activation pathway important in inflammatory, anti-apoptotic, and immune processes.
The potent sphingolipid metabolite sphingosine 1-phosphate is produced by phosphorylation of sphingosine catalyzed by sphingosine kinase (SphK) types 1 and 2. In contrast to pro-survival SphK1, the putative BH3-only protein SphK2 inhibits cell growth and enhances apoptosis. Here we show that SphK2 catalytic activity also contributes to its ability to induce apoptosis. Overexpressed SphK2 also increased cytosolic free calcium induced by serum starvation. Transfer of calcium to mitochondria was required for SphK2-induced apoptosis, as cell death and cytochrome c release was abrogated by inhibition of the mitochondrial Ca 2؉ transporter. Serum starvation increased the proportion of SphK2 in the endoplasmic reticulum and targeting SphK1 to the endoplasmic reticulum converted it from anti-apoptotic to pro-apoptotic. Overexpression of SphK2 increased incorporation of [ 3 H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide, whereas SphK1 decreased it. Electrospray ionizationmass spectrometry/mass spectrometry also revealed an opposite effect on ceramide mass levels. Importantly, specific down-regulation of SphK2 reduced conversion of sphingosine to ceramide in the recycling pathway and conversely, down-regulation of SphK1 increased it. Our results demonstrate that SphK1 and SphK2 have opposing roles in the regulation of ceramide biosynthesis and suggest that the location of sphingosine 1-phosphate production dictates its functions.The sphingolipid metabolite, sphingosine 1-phosphate (S1P), 3 a ligand for a family of five specific G protein-coupled receptors, and regulates many important cellular processes including growth, survival, differentiation, cytoskeleton rearrangements, motility, angiogenesis, and immunity (reviewed in Refs. 1-3). Although there is no doubt that S1P acts extracellularly, several studies suggest that this potent lipid, like its precursors sphingosine (4) and ceramide (N-acylsphingosine) (5-7), may also have intracellular functions important for calcium homeostasis (8), cell growth (9, 10), and suppression of apoptosis (11)(12)(13)(14).Like other lipid mediators, S1P levels are tightly regulated by the balance between synthesis, catalyzed by sphingosine kinase (SphK), irreversible cleavage by S1P lyase, and reversible dephosphorylation to sphingosine by specific S1P phosphatases. Two distinct SphK isoforms, SphK1 and SphK2, have been cloned and characterized (15,16). Diverse external stimuli, particularly growth and survival factors, stimulate SphK1 and intracellularly generated S1P has been implicated in their mitogenic and anti-apoptotic effects (10,13,(17)(18)(19)(20)(21)(22)(23)(24). Expression of SphK1 enhanced proliferation and growth in soft agar, promoted the G 1 -S transition, protected cells from apoptosis (10,14,17), and induced tumor formation in mice (17, 18). However, although SphK1 and intracellularly generated S1P can signal "inside-out" to regulate cytoskeletal rearrangements and cell movement, remarkably, cell growth stimulation...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.