Muconic acid is a promising platform biochemical and precursor to adipic acid, which can be used to synthesize various plastics and polymers. In this study, the systematic construction and comparative evaluation of a modular network of non-natural pathways for muconic acid biosynthesis was investigated in Escherichia coli, including via three distinct and novel pathways proceeding via phenol as a common intermediate. However, poor recombinant activity and high promiscuity of phenol hydroxylase ultimately limited "phenol-dependent" muconic acid production. A fourth pathway proceeding via p-hydroxybenzoate, protocatechuate, and catechol was accordingly developed, though with muconic acid titers by this route reaching just 819 mg/L, its performance lagged behind that of the established, "3-dehydroshikimiate-derived" route. Finally, these two most promising pathways were coexpressed in parallel to create a synthetic "metabolic funnel" that, by enabling maximal net precursor assimilation and flux while preserving native chorismate biosynthesis, nearly doubled muconic acid production to up to >3.1 g/L at a glucose yield of 158 mg/g while introducing only a single auxotrophy. This generalizable, "funneling" strategy is expected to have broad applications in metabolic engineering for further enhancing production of muconic acid, as well as other important bioproducts of interest.
2-Phenylethanol (2PE) is a key molecule used in the fragrance and food industries, as well as a potential biofuel. In contrast to its extraction from plant biomass and/or more common chemical synthesis, microbial 2PE production has been demonstrated via both native and heterologous expression of the yeast Ehrlich pathway. Here, a novel alternative to this established pathway is systematically engineered in Escherichia coli and evaluated as a more robust and efficient route. This novel pathway is constructed via the modular extension of a previously engineered styrene biosynthesis pathway, proceeding from endogenous l-phenylalanine in five steps and involving four heterologous enzymes. This "styrene-derived" pathway boasts nearly a 10-fold greater thermodynamic driving force than the Ehrlich pathway, and enables reduced accumulation of acetate byproduct. When directly compared using a host strain engineered for l-phenylalanine over-production, preservation of phosphoenolpyruvate, and reduced formation of byproduct 2-phenylacetic acid, final 2PE titers via the styrene-derived and Ehrlich pathways reached 1817 and 1164 mg L , respectively, at yields of 60.6 and 38.8 mg g . Following optimization of induction timing and initial glucose loading, 2PE titers by the styrene-derived pathway approached 2 g L - nearly a two-fold twofold increase over prior reports for 2PE production by E. coli employing the Ehrlich pathway.
Aromatic compounds represent a broad class of chemicals with a range of industrial applications, all of which are conventionally derived from petroleum feedstocks. However, owing to a diversity of available pathway precursors along with natural and engineered enzyme 'parts', microbial cell factories can be engineered to create alternative, renewable routes to many of the same aromatic products. Drawing from the latest tools and strategies in metabolic engineering and synthetic biology, such efforts are becoming an increasingly systematic practice, while continued efforts promise to open new doors to an ever-expanding range and diversity of renewable chemical and material products. This short review will highlight recent and notable achievements related for the microbial production of aromatic chemicals.
The non-renewable petrochemical phenol is used as a precursor to produce numerous fine and commodity chemicals, including various pharmaceuticals and phenolic resins. Microbial phenol biosynthesis has previously been established, stemming from endogenous tyrosine via tyrosine phenol lyase (TPL). TPL, however, suffers from feedback inhibition and equilibrium limitations, both of which contribute to reduced flux through the overall pathway. To address these limitations, two novel and non-natural phenol biosynthesis pathways, both stemming instead from chorismate, were constructed and comparatively evaluated. The first proceeds to phenol in one heterologous step via the intermediate p-hydroxybenzoic acid, while the second involves two heterologous steps and the associated intermediates isochorismate and salicylate. Maximum phenol titers achieved via these two alternative pathways reached as high as 377 ± 14 and 259 ± 31 mg/L in batch shake flask cultures, respectively. In contrast, under analogous conditions, phenol production via the established TPL-dependent route reached 377 ± 23 mg/L, which approaches the maximum achievable output reported to date under batch conditions. Additional strain development and optimization of relevant culture conditions with respect to each individual pathway is ultimately expected to result in further improved phenol production. Biotechnol. Bioeng. 2016;113: 1745-1754. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.