This research aims at characterizing susceptibility conditions to gully erosion by means of GIS and multivariate statistical analysis. The study area is a 9.5 km 2 river catchment in central-northern Sicily, where agriculture activities are limited by intense erosion. By means of field surveys and interpretation of aerial images, we prepared a digital map of the spatial distribution of 260 gullies in the study area. In addition, from available thematic maps, a 5 m cell size digital elevation model and field checks, we derived 27 environmental attributes that describe the variability of lithology, land use, topography and road position. These attributes were selected for their potential influence on erosion processes, while the dependent variable was given by presence or absence of gullies within two different types of mapping units: 5 m grid cells and slope units (average size = 2.66 ha). The functional relationships between gully occurrence and the controlling factors were obtained from forward stepwise logistic regression to calculate the probability to host a gully for each mapping unit. In order to train and test the predictive models, three calibration and three validation subsets, of both grid cells and slope units, were randomly selected. Results of validation, based on ROC (receiving operating characteristic) curves, attest for acceptable to excellent accuracies of the models, showing better predictive skill and more stable performance of the susceptibility model based on grid cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.