Models of quantum walks which admit continuous time and continuous spacetime limits have recently led to quantum simulation schemes for simulating fermions in relativistic and nonrelativistic regimes (Molfetta GD, Arrighi P. A quantum walk with both a continuous-time and a continuous-spacetime limit, 2019). This work continues the study of relationships between discrete time quantum walks (DTQW) and their ostensive continuum counterparts by developing a more general framework than was done in Molfetta and Arrighi (A quantum walk with both a continuous-time and a continuous-spacetime limit, 2019) to evaluate the continuous time limit of these discrete quantum systems. Under this framework, we prove two constructive theorems concerning which internal discrete transitions (“coins”) admit nontrivial continuum limits. We additionally prove that the continuous space limit of the continuous time limit of the DTQW can only yield massless states which obey the Dirac equation. Finally, we demonstrate that for general coins the continuous time limit of the DTQW can be identified with the canonical continuous time quantum walk when the coin is allowed to transition through the continuous limit process.
A Plastic Quantum Walk admits both continuous time and continuous spacetime. The model has been recently proposed by one of the authors in [1], leading to a general quantum simulation scheme for simulating fermions in the relativistic and non relativistic regimes. The extension to two physical dimensions is still missing and here, as a novel result, we demonstrate necessary and sufficient conditions concerning which discrete time quantum walks can admit plasticity, showing the resulting Hamiltonians. We consider coin operators as general 4 parameter unitary matrices, with parameters which are function of the lattice step size ε. This dependence on ε encapsulates all functions of ε for which a Taylor series expansion in ε is well defined, making our results very general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.