The focus of this work was to develop a continuous-flow vessel with extensive optical access for characterization of engine-relevant fuel-injection and spray processes. The spray chamber was designed for non-reacting experiments at pressures up to 1380 kPa (200 psi) and temperatures up to 200°C. Continuous flow of inert “sweep gas” enables acquisition of large statistical data samples and thus potentially enables characterization of stochastic spray processes. A custom flange was designed to hold a common-rail diesel injector, with significant flexibility to accommodate other injectors and injector types in the future. This flexibility, combined with the continuous flow through the chamber, may enable studies of gas-turbine direct-injection spray processes in the future. Overall, the user can control and vary: injection duration, injection pressure, sweep-gas temperature, sweep-gas pressure, and sweep-gas flow rate. The user also can control frequency of replicate injections.
There are four flat windows installed orthogonally on the vessel for optical access. Optical data, at present, include global spray properties such as liquid-phase fuel penetration and cone angle. These measurements are made using a high-speed spray-visualization system (up to 100 kHz) consisting of a fast-pulsed LED (light emitting diode) source and a high-speed camera. Experimental control and data acquisition have been set up and synchronized using custom LabVIEW programs. The culmination of this development effort was an initial demonstration experiment to capture high-speed spray-visualization movies of n-heptane injections to determine liquid-phase fuel penetration length (i.e., liquid length) and spray cone angle. In this initial experiment, fuel-injection pressure was ∼120 MPa (1200 bar) and the injection command-pulse duration was 800 μs. At room conditions, liquid length and nominal spray cone angle were ∼170 mm and ∼14.5°, respectively. In contrast, with air flow in the chamber at 100 psi and 100°C, liquid length was considerably shorter at ∼92 mm and spray cone angle was wider at ∼16.5°. Future experiments will include the continuation of these measurements for a wider range of conditions and fuels, extension of high-speed imaging to vapor-phase fuel penetration using schlieren imaging techniques, and detailed characterization of spray properties near the injector nozzle and near the liquid length.
The purpose of this study was to measure global properties of n-heptane sprays using high-speed spray visualization in a newly developed constant-pressure flow vessel. Liquid-phase fuel penetration distance and cone angle were determined for low-density and low-temperature ambient conditions, which are increasingly relevant due to the advent of early direct-injection low-temperature combustion. Results indicated that fuel sprays under these conditions do not behave as predicted by established models. Penetration distances increased steadily throughout and after injection, and liquid-phase fuel persisted long after end of injection. Results suggest that these sprays vaporize extremely slowly and could cause wall-wetting issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.