In recent years, white sharks (Carcharodon carcharias) have become more accessible to researchers off the northeastern U.S. as feeding aggregation sites have emerged and the population has increased. However, there has been limited research on young-of-the-year (YOY) sharks relative to older age classes in this region. Previous research indicated that YOY white sharks were most frequently observed in the New York Bight, suggesting the region serves a nursery role. To further examine the species’ use of this area, we deployed satellite and acoustic tags on ten YOY white sharks (138–166 cm total length) off Long Island, New York. The sharks remained resident in New York Bight waters through summer (August through October), further supporting the notion that the region is a nursery area. Southward movements were observed during fall, with overwintering habitat identified off North and South Carolina shelf waters. Return migrations toward the New York Bight were observed in some individuals the following spring. YOY white sharks in this heavily-populated region are exposed to anthropogenic impacts such as fisheries bycatch and coastal habitat degradation. As juvenile survival rates are important for long-term population sustainability, further research is necessary to assess the potential impacts of these activities on the western North Atlantic white shark population.
As highly mobile predators with extensive home ranges, some shark species often utilize a continuum of habitats across the continental shelf ranging from the surf zone to the open ocean. For many species, these cross-shelf distributions can change depending on ontogeny or seasonal conditions. Recent research has confirmed a white shark (Carcharodon carcharias) summer nursery off Long Island, New York; however, habitat characterization of this nursery has not yet been conducted nor has fine-scale analysis of vertical behavior. Between 2016 and 2019, 21 young-of-the-year and juvenile white sharks were fitted with satellite and acoustic tags to examine distribution and selection for a suite of oceanographic variables during their late summertime (i.e., August to October) residence in the New York Bight. Horizontal position estimates were used to extract a suite of environmental measurements via remote sensing platforms and were linked with vertical profiles to produce three-dimensional movements for a subset of individuals also fitted with pop-up satellite archival tags (n = 7). Sharks exhibited horizontal movements parallel to Long Island’s southern shoreline and coastal New Jersey, with distances from 0.1 to 131.5 km from shore. Log-likelihood chi-square analyses determined selection for waters with underlying bathymetry of 20–30 m, sea surface temperatures between 20.0 and 22.0°C, sea surface salinities between 31.0 and 32.0 ppt, and chlorophyll-a concentrations between 2.0 and 8.0 mg⋅m–3. Multiple individuals also traversed the mid- to outer shelf region after leaving the Montauk tagging area. Vertical depth profiles illustrated oscillations between the surface and 199 m of water, with an average swimming depth of 9.2 ± 8.9 m. Water column temperatures during these oscillations ranged between 7.9 and 26.2°C (mean = 19.5 ± 2.0°C) with several individuals traversing highly stratified regions presumably associated with a mid-shelf cold pool adjacent to the Hudson Shelf Valley. These results suggest young white sharks exhibit connectivity between the immediate shoreline and mid-continental shelf region, where they play important ecological roles as predators on a variety of species. Our study improves characterization of essential fish habitat for young white sharks and provides new insights into their reliance on this productive continental shelf ecosystem.
Sharks are considered top predators in many marine ecosystems and can play an important role in structuring community ecology. As a result, it is necessary to understand the factors that influence their abundance and distribution. This is particularly important as fishery managers develop management plans for sharks that identify areas that serve as essential fish habitat, especially nursery habitat. However, our understanding of shark habitat use in northeast Florida waters is limited. The goal of this study was to characterize the abundance and distribution of sharks in northeast Florida estuaries and to examine the effect of abiotic factors on shark habitat use. A bottom longline survey conducted from 2009 to 2011 indicated that 11 shark species use the estuarine waters of northeast Florida during the summer months. Atlantic Sharpnose Sharks Rhizoprionodon terraenovae, Blacktip Sharks Carcharhinus limbatus, and Bonnetheads Sphyrna tiburo were the most abundant species and made up 81.4% of the total catch. Site, month, and bottom water temperature were the most important factors determining the presence and abundance of sharks and suggest both regional and seasonal variations in the use of northeast Florida waters. Depth, salinity, and dissolved oxygen were also important factors. Our data show that these waters serve as a nursery for Atlantic Sharpnose and Blacktip Sharks, with young‐of‐the‐year and juveniles being present in the summer months. Limited tag–return data reveal that juvenile sharks remain in these waters throughout the summer and that some return in subsequent summers. This is the first study to characterize the abundance and distribution of sharks and identify potential nursery areas in northeast Florida estuaries.Received October 10, 2012; accepted March 7, 2013
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.