Details of the design, fabrication, ground and flight calibration of the High Energy Transmission Grating, HETG, on the Chandra X-ray Observatory are presented after five years of flight experience. Specifics include the theory of phased transmission gratings as applied to the HETG, the Rowland design of the spectrometer, details of the grating fabrication techniques, and the results of ground testing and calibration of the HETG. For nearly six years the HETG has operated essentially as designed, although it has presented some subtle flight calibration effects.
The surface topography of thin, transparent materials is of interest in many areas. Some examples include glass substrates for computer hard disks, photomasks in the semiconductor industry, flat panel displays, and x-ray telescope optics. Some of these applications require individual foils to be manufactured with figure errors that are a small fraction of a micron over 10-to 200-mm lengths. Accurate surface metrology is essential to confirm the efficacy of manufacturing and substrate flattening processes. Assembly of these floppy optics is also facilitated by such a metrology tool. We report on the design and performance of a novel deep-ultraviolet (deep-UV) Shack-Hartmann surface metrology tool developed for this purpose. The use of deep-UV wavelengths is particularly advantageous for studying transparent substrates such as glass, which are virtually opaque to wavelengths below 260 nm. The system has a 143ϫ143-mm 2 field of view at the object plane. Performance specifications include 350-rad angular dynamic range and 0.5-rad angular sensitivity. Surface maps over a 100 mm diam are accurate to Ͻ17-nm rms and repeatable to 5 nm rms.
The Reflection Grating Spectrometer of the Constellation-X mission has two strong candidate configurations. The first configuration, the in-plane grating (IPG), is a set of reflection gratings similar to those flown on XMMNewton and has grooves perpendicular to the direction of incident light. In the second configuration, the off-plane grating (OPG), the grooves are closer to being parallel to the incident light, and diffract along a cone. It has advantages of higher packing density, and higher reflectivity. Confinement of these gratings to sub-apertures of the optic allow high spectral resolution. We have developed a raytrace model and analysis technique for the off-plane grating configuration. Initial estimates indicate that first order resolving powers in excess of 1000 (defined with half-energy width) are achievable for sufficiently long wavelengths (λ 12Å), provided separate accommodation is made for gratings in the subaperture region farther from the zeroth order location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.