The Restricted Access Window (RAW) mechanism proposed by IEEE 802.11ah promises to address one of the major problems of the Internet of Things (IoT): high channel contention in large-scale densely deployed sensor networks. The RAW feature allows the Access Point (AP) to divide stations into different groups, with only the stations in the same group being allowed to access the channel simultaneously. Existing station grouping strategies only support homogeneous scenarios, where all sensor stations have the same fixed data transmission interval, modulation and coding scheme (MCS) and packet size. In this paper, we present two contributions to address this issue. First, a surrogate model that predicts RAW performance given specific network conditions and RAW configuration parameters. It is fast to train and can be solved in real-time. Second, the Model-Based RAW Optimization Algorithm (MoROA), which uses the surrogate model to determine the optimal RAW configuration in real-time, for heterogeneous stations and dynamic traffic. We compare the accuracy of our surrogate model to simulation results. Performance of MoROA is compared to existing RAW optimization algorithms and traditional 802.11 channel access methods. The results shows that the trained surrogate model can accurately predict RAW performance with a relative error less than 7% and 10% for 95% and 98% of the RAW configurations respectively. MoROA achieves a throughput up to twice as high as traditional 802.11 channel access functions in dense heterogeneous networks.
A large amount of research focuses on experimentally optimizing the performance of wireless solutions. Finding the optimal performance settings typically requires investigating all possible combinations of design parameters, while the number of required experiments increases exponentially for each considered design parameter. The aim of this paper is to analyze the applicability of global optimization techniques to reduce the optimization time of wireless experimentation. In particular, the paper applies the Efficient Global Optimization (EGO) algorithm implemented in the SUrrogate MOdeling (SUMO) toolbox inside a wireless testbed. Moreover, to cope with the unpredictable nature of wireless testbeds, the paper applies an experiment outlier detection which monitors outside interference and verifies the validity of conducted experiments. The proposed techniques are implemented and evaluated in a wireless testbed using a realistic wireless conferencing scenario. The performance gain and experimentation time of a SUMO optimized experiment is compared against an exhaustively searched experiment. In our proof of concept, it is shown that the proposed SUMO optimizer reaches 99.79% of the global optimum performance while requiring 8.67 times less experiments compared to the exhaustive search experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.