Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.
Genome-wide transcript profiling was used to monitor signal transduction during yeast pheromone response. Genetic manipulations allowed analysis of changes in gene expression underlying pheromone signaling, cell cycle control, and polarized morphogenesis. A two-dimensional hierarchical clustered matrix, covering 383 of the most highly regulated genes, was constructed from 46 diverse experimental conditions. Diagnostic subsets of coexpressed genes reflected signaling activity, cross talk, and overlap of multiple mitogen-activated protein kinase (MAPK) pathways. Analysis of the profiles specified by two different MAPKs-Fus3p and Kss1p-revealed functional overlap of the filamentous growth and mating responses. Global transcript analysis reflects biological responses associated with the activation and perturbation of signal transduction pathways.
Starvation for amino acids induces Gcn4p, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. In an effort to identify all genes regulated by Gcn4p during amino acid starvation, we performed cDNA microarray analysis. Data from 21 pairs of hybridization experiments using two different strains derived from S288c revealed that more than 1,000 genes were induced, and a similar number were repressed, by a factor of 2 or more in response to histidine starvation imposed by 3-aminotriazole (3AT). Profiling of a gcn4⌬ strain and a constitutively induced mutant showed that Gcn4p is required for the full induction by 3AT of at least 539 genes, termed Gcn4p targets. Genes in every amino acid biosynthetic pathway except cysteine and genes encoding amino acid precursors, vitamin biosynthetic enzymes, peroxisomal components, mitochondrial carrier proteins, and autophagy proteins were all identified as Gcn4p targets. Unexpectedly, genes involved in amino acid biosynthesis represent only a quarter of the Gcn4p target genes. Gcn4p also activates genes involved in glycogen homeostasis, and mutant analysis showed that Gcn4p suppresses glycogen levels in amino acid-starved cells. Numerous genes encoding protein kinases and transcription factors were identified as targets, suggesting that Gcn4p is a master regulator of gene expression. Interestingly, expression profiles for 3AT and the alkylating agent methyl methanesulfonate (MMS) overlapped extensively, and MMS induced GCN4 translation. Thus, the broad transcriptional response evoked by Gcn4p is produced by diverse stress conditions. Finally, profiling of a gcn4⌬ mutant uncovered an alternative induction pathway operating at many Gcn4p target genes in histidine-starved cells.In response to environmental perturbations, Saccharomyces cerevisiae cells elicit rapid transcriptional reprogramming involving both activation and repression of gene expression. Transcriptional activator proteins function by binding to specific promoter elements, called upstream activating sequences (UASs) in yeast cells, and recruiting the transcriptional machinery. Thus, transcriptional stimulation requires the expression and function of an activator and the appropriate UAS element in the promoters of its target genes. A plethora of mechanisms are known to regulate the activity or expression of transcriptional activators in response to specific signals. For example, in cells grown on glucose, Gal80p inhibits the ability of Gal4p to activate transcription of genes encoding galactosemetabolizing enzymes, whereas Gal3p alleviates this inhibition on galactose medium (83). The transcriptional activators Pho4p, Swi5p, and Yap1p are regulated by the coupling of their nuclear localization to the levels of inorganic phosphate, cell cycle and mother-daughter status, or oxidative stress, respectively (reviewed in reference 52). Starvation for amino acids, purines, and glucose limitation induces the synthesis of Gcn4p, a bZIP transcriptional activator of amino acid biosynthetic gene...
We describe a flexible system for gene expression profiling using arrays of tens of thousands of oligonucleotides synthesized in situ by an ink-jet printing method employing standard phosphoramidite chemistry. We have characterized the dependence of hybridization specificity and sensitivity on parameters including oligonucleotide length, hybridization stringency, sequence identity, sample abundance, and sample preparation method. We find that 60-mer oligonucleotides reliably detect transcript ratios at one copy per cell in complex biological samples, and that ink-jet arrays are compatible with several different sample amplification and labeling techniques. Furthermore, results using only a single carefully selected oligonucleotide per gene correlate closely with those obtained using complementary DNA (cDNA) arrays. Most of the genes for which measurements differ are members of gene families that can only be distinguished by oligonucleotides. Because different oligonucleotide sequences can be specified for each array, we anticipate that ink-jet oligonucleotide array technology will be useful in a wide variety of DNA microarray applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.