Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defense and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyzes of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post-inoculation with Azospirillum lipoferum 4B (isolated from Cigalon) or Azospirillum sp. B510 (isolated from Nipponbare) and compared to the respective non-inoculated condition. A total of 7384 genes were significantly regulated, which represent about 16% of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83% of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defense, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signaling highlight the complexity of hormone signaling networks in the Azospirillum-rice cooperation.
Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of the genus Chlorovirus (family Phycodnaviridae) that infects the unicellular, eukaryotic green alga Chlorella variabilis NC64A. The 331-kb PBCV-1 genome contains 416 major open reading frames. A mRNA-seq approach was used to analyze PBCV-1 transcriptomes at 6 progressive times during the first hour of infection. The alignment of 17 million reads to the PBCV-1 genome allowed the construction of single-base transcriptome maps. Significant transcription was detected for a subset of 50 viral genes as soon as 7 min after infection. By 20 min post infection (p.i.), transcripts were detected for most PBCV-1 genes and transcript levels continued to increase globally up to 60 min p.i., at which time 41% or the poly (A+)-containing RNAs in the infected cells mapped to the PBCV-1 genome. For some viral genes, the number of transcripts in the latter time points (20 to 60 min p.i.) was much higher than that of the most highly expressed host genes. RNA-seq data revealed putative polyadenylation signal sequences in PBCV-1 genes that were identical to the polyadenylation signal AAUAAA of green algae. Several transcripts have an RNA fragment excised. However, the frequency of excision and the resulting putative shortened protein products suggest that most of these excision events have no functional role but are probably the result of the activity of misled splicesomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.