An approximate model predictive control approach is applied on an unmanned aerial vehicle with limited computational resources. A novel method using a continuous time parametrization of the state and input trajectory is used to derive a compact description of the optimal control problem. Different first order methods for the online optimization are discussed in terms of memory requirements and execution time. The generalized fast dual gradient method is implemented on the aerial vehicle. The approximate model predictive control algorithm runs on an embedded platform with a STM32 Cortex M4 processor. Simulation studies show that the model predictive controller outperforms a linear quadratic regulator in aggressive maneuvers. The model predictive control approach is evaluated in practice and shown to yield satisfactory flight behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.