The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.
International audienceThermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is 200 ± 40 J m−2 s−0.5 K−1. Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D^(−1) dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids
The field of asteroid thermophysical modeling has experienced an extraordinary growth in the last ten years, as new thermal infrared data became available for hundreds of thousands of asteroids. The infrared emission of asteroids depends on the body's size, shape, albedo, thermal inertia, roughness and rotational properties. These parameters can therefore be derived by thermophysical modeling of infrared data. Thermophysical modeling led to asteroid size estimates that were confirmed at the few-percent level by later spacecraft visits. We discuss how instrumentation advances now allow mid-infrared interferometric observations as well as high-accuracy spectro-photometry, posing their own set of thermal-modeling challenges. We present major breakthroughs achieved in studies of the thermal inertia, a sensitive indicator for the nature of asteroids soils, allowing us, for instance, to determine the grain size of asteroidal regoliths. Thermal inertia also governs non-gravitational effects on asteroid orbits, requiring thermophysical modeling for precise asteroid dynamical studies. The radiative heating of asteroids, meteoroids, and comets from the Sun also governs the thermal stress in surface material; only recently has it been recognized as a significant weathering process. Asteroid space missions with thermal infrared instruments are currently undergoing study at all major space agencies. This will require a high level of sophistication of thermophysical models in order to analyze high-quality spacecraft data.
PurposeAge-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future.DesignMeta-analysis of prevalence data.ParticipantsA total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe.MethodsAMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV).Main Outcome MeasuresPrevalence of early and late AMD, BCVA, and number of AMD cases.ResultsPrevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95% CI 13.6%–21.5%) in those aged ≥85 years; for late AMD these figures were 0.1% (95% CI 0.04%–0.3%) and 9.8% (95% CI 6.3%–13.3%), respectively. We observed a decreasing prevalence of late AMD after 2006, which became most prominent after age 70. Prevalences were similar for gender across all age groups except for late AMD in the oldest age category, and a trend was found showing a higher prevalence of CNV in Northern Europe. After 2006, fewer eyes and fewer ≥80-year-old subjects with CNV were visually impaired (P = 0.016). Projections of AMD showed an almost doubling of affected persons despite a decreasing prevalence. By 2040, the number of individuals in Europe with early AMD will range between 14.9 and 21.5 million, and for late AMD between 3.9 and 4.8 million.ConclusionWe observed a decreasing prevalence of AMD and an improvement in visual acuity in CNV occuring over the past 2 decades in Europe. Healthier lifestyles and implementation of anti–vascular endothelial growth factor treatment are the most likely explanations. Nevertheless, the numbers of affected subjects will increase considerably in the next 2 decades. AMD continues to remain a significant public health problem among Europeans.
Aims. The goal of this work is to characterize the ensemble thermal properties of the Centaurs / trans-Neptunian population. Methods. Thermal flux measurements obtained with Herschel/PACS and Spitzer/MIPS provide size, albedo, and beaming factors for 85 objects (13 of which are presented here for the first time) by means of standard radiometric techniques. The measured beaming factors are influenced by the combination of surface roughness and thermal inertia effects. They are interpreted within a thermophysical model to constrain, in a statistical sense, the thermal inertia in the population and to study its dependence on several parameters. We use in particular a Monte-Carlo modeling approach to the data whereby synthetic datasets of beaming factors are created using random distributions of spin orientation and surface roughness. Results. Beaming factors η range from values <1 to ∼2.5, but high η values (>2) are lacking at low heliocentric distances (r h < 30 AU). Beaming factors lower than 1 occur frequently (39% of the objects), indicating that surface roughness effects are important. We determine a mean thermal inertia for Centaurs/ TNO of Γ = (2.5 ± 0.5) J m −2 s −1/2 K −1 , with evidence of a trend toward decreasing Γ with increasing heliocentric (by a factor ∼2.5 from 8-25 AU to 41-53 AU). These thermal inertias are 2-3 orders of magnitude lower than expected for compact ices, and generally lower than on Saturn's satellites or in the Pluto/Charon system. Most high-albedo objects are found to have unusually low thermal inertias. Our results suggest highly porous surfaces, in which the heat transfer is affected by radiative conductivity within pores and increases with depth in the subsurface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.