The dynamics of invasive plant populations are intriguing and informative of the importance of population and community‐level processes. A dominant approach to understanding and describing invasion has been the development of unique hypotheses to explain invasion. However, here we directly explore the relevance of the small‐scale, spatiotemporal pattern in seedbanks and plants of the highly invasive weed, Centaurea solstitialis, to determine whether pattern can be used to contrast predictions associated with the simple ecological hypotheses of seed versus microsite limitations. At three invaded grasslands in California, highly invaded (> 20 adult plants present), invaded (< 10 adults), and uninvaded (no C. solstitialis plants) sites were selected. The spatial pattern of the seedbank was assessed using fine‐scale, 2 cm diameter contiguous cores and geostatistical statistics, and the number of C. solstitialis seeds in the seedbank was recorded in addition to the total community seedbank density. Three of the four critical predictions associated with the seed limitation hypothesis were clearly supported as an explanation for the patterns of C. solstitialis invasion observed in the field. The density of C. solstitialis seeds decreased from high to low extents of invasion, there was no relationship between the community seedbank and C. solstitialis seeds, and the distances between C. solstitialis plants was inversely related to the density of C. solstitialis seeds. However, both the persistent and transient seedbanks of C. solstitialis were spatially aggregated with autocorrelation up to 12 cm2 which suggests that aggregation is a consistent attribute of this species in the seedbank regardless of extent of invasion. This basic pattern‐based approach clearly detected an ecological signal of invasive seedbank dynamics and is thus a useful tool for subsequent studies of invasions in grasslands.
Many hypotheses are prevalent in the literature predicting why some plant species can become invasive. However, in some respects, we lack a standard approach to compare the breadth of various studies and differentiate between alternative explanations. Furthermore, most of these hypotheses rely on ‘changes in density’ of an introduced species to infer invasiveness. Here, we propose a simple method to screen invasive plant species for potential differences in density effects between novel regions. Studies of plant competition using density series are a fundamental tool applied to virtually every aspect of plant population ecology to better understand evolution. Hence, we use a simple density series with substitution contrasting the performance of Centaurea solstitialis in monoculture (from one region) to mixtures (seeds from two regions). All else being equal, if there is no difference between the introduced species in the two novel regions compared, Argentina and California, then there should be no competitive differences between intra and inter-regional competition series. Using a replicated regression design, seeds of each species were sown in the greenhouse at 5 densities in monoculture and mixed and grown till onset of flowering. Centaurea seeds from California had higher germination while seedlings had significantly greater survival than Argentina. There was no evidence for density dependence in any measure for the California region but negative density dependence was detected in the germination of seeds from Argentina. The relative differences in competition also differed between regions with no evidence of differential competitive effects of seeds from Argentina in mixture versus monoculture while seeds from California expressed a relative cost in germination and relative growth rate in mixtures with Argentina. In the former instance, lack of difference does not mean ‘no ecological differences’ but does suggest that local adaptation in competitive abilities has not occurred. Importantly, this method successfully detected differences in the response of an invasive species to changes in density between novel regions which suggests that it is a useful preliminary means to explore invasiveness.
Numerous hypotheses have been invoked to explain invasion in plant communities. Here, we use a fundamental tool from plant ecology, density series in situ, to explore whether a reasonable starting point for highly successful invasive plant species is to consider regulation (biotic effects) and limitation (environmental constraints). To explore the utility of density series to understanding invasion we present a case study using C. solstitialis, a perfect candidate since it is a prolific seed producer and invasive in many grasslands globally. Using seed addition into existing vegetation in three grasslands with densities of up to 6500 seeds per m 2 , we found no evidence for regulation via intra or interspecific interference but large differences amongst sites. This strongly suggests that in this species limitations imposed by the environment are the only constraints. Hence, we propose that an excellent starting point for ecologists studying invasion should involve back to the basics experiments on novel species to determine whether other hypotheses need be invoked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.