Iron-doped, nickel oxyhydroxide (Ni(Fe)OOH) is one of the best catalysts for the oxygen evolution reaction (OER) under alkaline conditions. Due to Ni(Fe)OOH’s layered structure, electrolyte species are able to easily intercalate between the octahedrally coordinated sheets. Electrolyte cations have long been considered inert spectator ions during electrocatalysis, but electrolytes that penetrate into the catalyst may play a major role in the reaction process. In a joint theoretical and experimental study, we report the role of electrolyte counterions (K+, Na+, Mg2+, and Ca2+) on Ni(Fe)OOH catalytic activity in alkaline media. We show that electrolytes containing alkali metal cations (Na+ and K+) yield dramatically lower overpotentials than those with alkaline earth cations (Mg2+ and Ca2+). K+ and Na+ lower the overpotential because they have an optimal acidity and size that allows them to not bind too strongly or alter the stability of reaction intermediates. These two features required for intercalated cation species provide insight into selecting appropriate electrolytes for layered catalyst materials, and enable understanding the role(s) of electrolytes in the OER mechanism.
Medical ultrasound and optoacoustic (photoacoustic) imaging commonly rely on the concepts of beam-forming and tomography for image formation, enabled by piezoelectric array transducers whose element size is comparable to the desired resolution. However, the tomographic measurement of acoustic signals becomes increasingly impractical for resolutions beyond 100 µm due to the reduced efficiency of piezoelectric elements upon miniaturization. For higher resolutions, a microscopy approach is preferred, in which a single focused ultrasound transducer images the object point-by-point, but the bulky apparatus and long acquisition time of this approach limit clinical applications. In this work, we demonstrate a miniaturized acoustic detector capable of tomographic imaging with spread functions whose width is below 20 µm. The detector is based on an optical resonator fabricated in a silicon-photonics platform coated by a sensitivity-enhancing elastomer, which also effectively eliminates the parasitic effect of surface acoustic waves. The detector is demonstrated in vivo in high-resolution optoacoustic tomography.
Thermoelectric (TE) materials are of utmost significance for conversion of heat flux into electrical power in the low-power regime. Their conversion efficiency depends strongly on the microstructure. AgSbTe-based compounds are high-efficiency TE materials suitable for the mid-temperature range. Herein, we explore an AgSbTe alloy (at %) subjected to heat treatments at 380 °C for different durations aimed at nucleation and coarsening of SbTe-precipitates. To characterize the SbTe-precipitation, we use a set of methods combining thermal and electrical measurements in concert with transmission electron microscopy and atom probe tomography. We find correlations between the measured TE transport coefficients and the applied heat treatments. Specifically, the lowest electrical and thermal conductivity values are obtained for the as-quenched state, whereas the highest values are observed for alloys aged for 8 h. In turn, long-term heat treatments result in intermediate values of transport coefficients. We explain these findings in terms of interplay between precipitate formation and variations in the matrix composition, highlighting the importance of thermal stability of the material under service conditions.
In this paper, a direct chemical vapor deposition (CVD) approach is applied for the first time to synthesize high quality copper oxide (CuO), copper tungstate (CuWO4) and tungsten oxide (WO3) on F:SnO2 (FTO) substrates for photocatalytic water splitting.
The quantum size effect is a well-known fundamental scientific phenomenon. Due to quantum confinement, downscaling a system to small sizes should increase the bandgap of a solid state material. However, in this work, we present an exception: monolayers of nickel hydroxide have smaller bandgaps than their bulk analogues, due to the surface states appearing at energies within the bandgap region. Our findings are obtained by several state-of-the-art first principles calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.