We have determined the role of the uvrA, uvrB, and uvrC genes in Escherichia coli cells in repairing DNA damage induced by three benzo[a]pyrene diol epoxide isomers. Using the phi X174 RF DNA-E. coli transfection system, we have found that BPDE-I or BPDE-II modified phi X174 RF DNA has much lower transfectivity in uvrA, uvrB, and uvrC mutant cells compared to wild type cells. In contrast, BPDE-III modification of phi X174 RF DNA causes much less difference in transfectivity between wild type and uvr- mutant cells. Moreover, BPDE-I and -II-DNA adducts are much more genotoxic than are BPDE-III-DNA adducts. Using purified UVRA, UVRB, and UVRC proteins, we have found that these three gene products, working together, incise both BPDE-I- and BPDE-III-DNA adducts quantitatively and, more importantly, at the same rate. In general, UVRABC nuclease incises on both the 5' (six to seven nucleotides) and 3' (four nucleotides) sides of BPDE-DNA adducts with similar efficiency with few exceptions. Quantitation of the UVRABC incision bands indicates that both of these BPDE isomers have different sequence selectivities in DNA binding. These results suggest that although UVR proteins can efficiently repair both BPDE-I- and BPDE-III-DNA adducts, in vivo the uvr system is the major excision mechanism for repairing BPDE-I-DNA adducts but may play a lesser role in repairing BPDE-III-DNA adducts. It is possible the low lethality of BPDE-III-DNA adducts is due to less complete blockage of DNA replication.(ABSTRACT TRUNCATED AT 250 WORDS)
The DNA bonding sites of two pyrrolo[1,4]benzodiazepine derivatives--tomaymycin (Tma) and anthramycin (Atm)--were identified by exonuclease III (exo III) digestion, lambda exonuclease (lambda exo) digestion, and UvrABC nuclease incision analysis. exo III digestion stalls 4-5 bases 3' to a drug-DNA adduct. While this method can recognize most of the Atm-and Tma-DNA modification sites, it is complicated in that exo III digestion is also stalled by certain unmodified sequences and by drug bound to the opposite strand. lambda exo digestion stalls 1-2 bases 5' to a drug-DNA adduct. The lambda exo method also recognizes most of the drug-DNA bonding sites and renders a cleaner background; however, it is also affected by opposite-strand drug bonding. Due to their intrinsic digestion polarities, these two exonucleases tend to be stalled by the drug-DNA adduct at one end of the DNA molecule. Purified UvrA, UvrB, and UvrC proteins acting together make dual incisions 6-8 bases 5' and 4 bases 3' to a Atm- or Tma-DNA adduct. This nuclease complex recognizes all the Tma- and Atm-DNA bonding sites identified by exonuclease digestion methods, and all the UvrABC incisions can be attributed to drug modifications in the incised DNA strand. The degree of UvrABC nuclease incision increases with increasing drug concentrations for DNA modification. Using the UvrABC incision method, we have identified the sequence preference of Tma- and Atm-DNA adduct formation in three DNA fragments, and we have found that these two drugs have different preferred sites for adduction. Both Tma- and Atm-DNA bonding is strongly influenced by the 5' and 3' neighboring bases; the orders of preferred 5' and 3' bases for Tma are A > G, T > C, and A, C > G, T, and for Atm the orders are A > G > T > C and A > G > T, C. The preferred triplets for Tma bonding are -AGA- > -GGC-, -TGC-, and AGC- and for Atm are -AGA-, -AGG- > -GGA-, -GGG-.
Using phosphocellulose followed by single-stranded DNA-cellulose chromatography for purification of UvrC proteins from overproducing cells, we found that UvrC elutes at two peaks: 0.4 M KCl (UvrCI) and 0.6 M KCl (UvrCII). Both forms of UvrC have a major peptide band (>95%) of the same molecular weight and identical Nterminal amino acid sequences, which are consistent with the initiation codon being at the unusual GTG site. Both forms of UvrC are active in incising UV-irradiated, supercoiled X-174 replicative form I DNA in the presence of UvrA and UvrB proteins; however, the specific activity of UvrCII is one-fourth that of UvrCI. The molecular weight of UvrCII is four times that of UvrCI on the basis of results of size exclusion chromatography and glutaraldehyde cross-linking reactions, indicating that UvrCII is a tetramer of UvrCI. Functionally, these two forms of UvrC proteins can be distinguished under reaction conditions in which the protein/nucleotide molar ratio is >0.06 by using UV-irradiated, 32 P-labeled DNA fragments as substrates; under these conditions UvrCII is inactive in incision, but UvrCI remains active. The activity of UvrCII in incising UV-irradiated, 32 Plabeled DNA fragments can be restored by adding unirradiated competitive DNA, and the increased level of incision corresponds to a decreased level of UvrCII binding to the substrate DNA. The sites of incision at the 5 and 3 sides of a UV-induced pyrimidine dimer are the same for UvrCI and UvrCII. Nitrocellulose filter binding and gel retardation assays show that UvrCII binds to both UV-irradiated and unirradiated double-stranded DNA with the same affinity (K a , 9 ؋ 10 8 /M) and in a concentration-dependent manner, whereas UvrCI does not. These two forms of UvrC were also produced by the endogenous uvrC operon. We propose that UvrCII-DNA binding may interfere with Uvr(A) 2 B-DNA damage complex formation. However, because of its low copy number and low binding affinity to DNA, UvrCII may not interfere with Uvr(A) 2 B-DNA damage complex formation in vivo, but instead through double-stranded DNA binding UvrCII may become concentrated at genomic areas and therefore may facilitate nucleotide excision repair.
bicaudal was the first Drosophila mutation identified as producing mirror-image pattern duplications along the anteroposterior axis of the embryo. However the mutation has been little studied due to its low penetrance and suppressibility. We undertook cloning of the bicaudal locus together with studies of the mutation's effects on key elements of the posterior embryonic patterning pathway. Our mapping studies place the bicaudal mutation within a approximately 2 kb region, 3′ to the protein coding sequence of the Drosophila homolog of beta NAC, a subunit of Nascent polypeptide Associated Complex (NAC). Genomic DNA encoding beta NAC completely rescues the bicaudal phenotype. The lethal phenotype of Enhancer of Bicaudal, E(Bic), a mutation hypothesized to affect the bicaudal locus, is also completely rescued by the beta NAC locus. We further demonstrate that the E(Bic) mutation is caused by a P element insertion into the transcribed region of the beta NAC gene. NAC is among the first ribosome-associated entities to bind the nascent polypeptide after peptide bond formation. In contrast to other bicaudal-embryo-producing mutations, bicaudal leads to ectopic translation of mRNA for the posterior determinant nanos, without affecting the localization of mRNA for its upstream regulator, oskar, in the embryo. These findings suggest that repression of nanos mRNA translation occurs on the ribosome and involves a role for beta NAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.