The relation between the nanoscale morphology and associated device properties in conjugated polymer/fullerene bulk‐heterojunction “plastic solar cells” is investigated. We perform complementary measurements on solid‐state blends of poly[2‐methoxy‐5‐(3,7‐dimethyloctyloxy)]‐1,4‐phenylenevinylene (MDMO‐PPV) and the soluble fullerene C60 derivative 1‐(3‐methoxycarbonyl) propyl‐1‐phenyl [6,6]C61 (PCBM), spin‐cast from either toluene or chlorobenzene solutions. The characterization of the nanomorphology is carried out via scanning electron microscopy (SEM) and atomic force microscopy (AFM), while solar‐cell devices were characterized by means of current–voltage (I–V) and spectral photocurrent measurements. In addition, the morphology is manipulated via annealing, to increase the extent of phase separation in the thin‐film blends and to identify the distribution of materials. Photoluminescence measurements confirm the demixing of the materials under thermal treatment. Furthermore the photoluminescence of PCBM clusters with sizes of up to a few hundred nanometers indicates a photocurrent loss in films of the coarser phase‐separated blends cast from toluene. For toluene‐cast films the scale of phase separation depends strongly on the ratio of MDMO‐PPV to PCBM, as well as on the total concentration of the casting solution. Finally we observe small beads of 20–30 nm diameter, attributed to MDMO‐PPV, in blend films cast from both toluene and chlorobenzene.
We conducted a comprehensive Kelvin probe force microscopy (KPFM) study on a classical organic solar cell system consisting of MDMO-PPV/PCBM blends. The KPFM method yields the information of topography and local work function at the nanometer scale. Experiments were performed either in the dark or under cw laser illumination at 442 nm. We identified distinct differences in the energetics on the surface of chlorobenzene and toluene cast blend films. Together with high-resolution scanning electron microscopy (SEM) experiments we were able to interpret the KPFM results and to draw some conclusions for the electron transport toward the cathode in the solar cell configuration. The results suggest that surfaces of toluene cast films exhibit a morphologically controlled hindrance for electron propagation toward the cathode, which is usually evaporated on top of the films in the solar cell device configuration.
Spherical voids as light scattering centers in nanocrystalline TiO2 films were realized with polystyrene particles of diameter 400 nm, thus enhancing the photovoltaic performance by 25% on large areas, as well as providing an indication that these films can be used with electrolytes of higher viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.