The wetting of rough surfaces remains a subject of active investigation by scientists. The contact angle (CA) is a traditional parameter used to characterize the hydrophobicity/philicity of a solid surface. However, it was found recently that high CAs can coexist with strong adhesion between water and a solid surface in the case of the so-called 'rose petal effect'. Several additional parameters have been proposed to characterize the interaction of water with a rough solid surface, including the CA hysteresis, the ability of water droplets to bounce off a solid surface, the tilt angle needed to initiate the flow of a droplet, and the normal and shear adhesion. It is clear now that wetting is not characterized by a single parameter, since several modes or regimes of wetting of a rough surface can exist, including the Wenzel, Cassie, lotus and petal. Understanding the wetting of rough surfaces is important in order to design non-adhesive surfaces for various applications.
The stability of a composite interface of roughness-induced superhydrophobic surfaces is studied. To have high contact angle and low contact angle hysteresis, superhydrophobic surfaces should be able to form a composite interface with air pockets in the valleys between asperities (pillars). However, the composite interface may be unstable and can be irreversibly transformed into a homogeneous interface. We formulate a stability criterion and analyze the stability of the composite interface for several typical roughness profiles. To resist destabilizing mechanisms, multiscale (hierarchical) roughness is required. Such multiscale roughness is found in natural and artificial superhydrophobic surfaces.
Micro- and macrodroplet evaporation and condensation upon micropatterned superhydrophobic surfaces built of flattop pillars are investigated with the use of an environmental scanning electron microscope. It is shown that the contact angle hysteresis depends upon both kinetic effects at the triple line and adhesion hysteresis (inherently present even at a smooth surface) and that the magnitude of the two contributions is comparable. The transition between the composite (Cassie) and wetted (Wenzel) states is a linear effect with the microdroplet radius proportional to the pitch over pillar diameter. It is shown that wetting of a superhydrophobic surface is a multiscale phenomenon that involves three scale lengths. Although the contact angle is the macroscale parameter, the contact angle hysteresis and the Cassie--Wenzel transition cannot be determined from the macroscale equations and are governed by micro- and nanoscale effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.