Most granule neurons in the rat dentate gyrus are born over the course of the first 2 postnatal weeks. The resulting heterogeneity has made it difficult to define the relationship between dendritic and axonal maturation and to delineate a time course for the morphological development of the oldest granule neurons. By depositing crystals of the fluorescent label Dil in hippocampal field CA3, we retrogradely labeled granule neurons in fixed tissue slices from rats aged 2-9 days. The results showed that all labeled granule cells, regardless of the age of the animal, exhibited apical dendrites. On day 2, every labeled neuron had rudimentary apical dendrites, and a few dendrites on each cell displayed immature features such as growth cones, varicosities, and filopodia. Some cells displayed basal dendrites. By day 4, the most mature granule neurons had longer and more numerous apical branches, as well as various immature features. Most had basal dendrites. On days 5 and 6, the immature features and the basal dendrites had begun to regress on the oldest cells, and varying numbers of spines were present. On day 7, the first few adult-like neurons were seen: immature features and basal dendrites had disappeared, all dendrites reached the top of the molecular layer, and the entire dendritic tree was covered with spines. These data show that dendritic outgrowth occurs before, or concurrent with, axon arrival in the CA3 target region, and that adult-like granule neurons are present by the end of the first week.
This chapter provides an introduction to the European Convention on Human Rights, with a general account of the elements of the human rights guarantee that it contains and the system for its enforcement. It first explains the origins and development of the Convention. It goes on to cover the substantive guarantee; the Strasbourg enforcement machinery; reservations; the interpretation of the Convention, including: negative and positive obligations; the margin of appreciation; the principle of subsidiarity; the application of the Convention by national courts and the EU; the enforcement and executions of Court judgments; and the achievements and prospects of the Convention.
The impact of structure in modulating synaptic signals originating in dendrites is widely recognized. In this study, we focused on the impact of dendrite morphology on a local spike generating mechanism which has been implicated in hormone secretion, the after depolarization potential (ADP). Using multi-compartmental models of hypothalamic GnRH neurons, we systematically truncated dendrite length and determined the consequence on ADP amplitude and repetitive firing. Decreasing the length of the dendrite significantly increased the amplitude of the ADP and increased repetitive firing. These effects were observed in dendrites both with and without active conductances suggesting they largely reflect passive characteristics of the dendrite. In order to test the findings of the model, we performed whole-cell recordings in GnRH neurons and elicited ADPs using current injection. During recordings, neurons were filled with biocytin so that we could determine dendritic and total projection (dendrite plus axon) length. Neurons exhibited ADPs and increasing ADP amplitude was associated with decreasing dendrite length, in keeping with the predictions of the models. Thus, despite the relatively simple morphology of the GnRH neuron's dendrite, it can still exert a substantial impact on the final neuronal output.
Adult GnRH neurons exhibit a stereotypic morphology with a small soma, single axon, and single dendrite arising from the soma with little branching. The adult morphology of GnRH neurons in mice reflects an anatomical consolidation of dendrites over postnatal development. We examined this issue in rat GnRH neurons with biocytin filling in live hypothalamic slices from infant males, as adult littermates and in gonad-intact males, castrated males, and in males with one of three levels of testosterone (T) treatment. Somatic area and total dendritic length were significantly greater in infant males than in adults. Moreover, total numbers of dendrite branches were greater in infant males as compared with adults. The number of higher order branches and the lengths of higher order branches were also greater in infant males than in adults. Most interestingly, in adults a single dendrite arose from the somata, consistently at 180° from the axon. In contrast, prepubertal animals had an average of 2.2 ± 0.2 primary dendrites arising from somata (range, one to seven primary dendrites). Angles relative to the axon at which dendrites in prepubertal males emanated from GnRH somata were highly variable. Castration at 25 d of age and castration at 25 d of age with one of three levels of T treatment did not influence morphological parameters when GnRH neurons were examined between 40 d and 48 d of age. Thus, a spatially selective remodeling of primary dendrites and consolidation of distal GnRH dendritic arbors occurs during postnatal development and is largely independent of T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.