Random alloy fluctuations significantly affect the electronic, optical, and transport properties of (In,Ga)N-based optoelectronic devices. Transport calculations accounting for alloy fluctuations currently use a combination of modified continuum-based models, which neglect to a large extent atomistic effects. In this work, we present a model that bridges the gap between atomistic theory and macroscopic transport models. To do so, we combine atomistic tight-binding theory and continuum-based drift–diffusion solvers, where quantum corrections are included via the localization landscape method. We outline the ingredients of this framework in detail and present first results for uni-polar electron transport in single and multi- (In,Ga)N quantum well systems. Overall, our results reveal that both random alloy fluctuations and quantum corrections significantly affect the current–voltage characteristics of uni-polar electron transport in such devices. However, our investigations indicate that the importance of quantum corrections and random alloy fluctuations can be different for single and multi-quantum well systems.
Carrier localization effects in III-N heterostructures are often studied in the frame of modified continuum-based models utilizing a single-band effective mass approximation. However, there exists no comparison between the results of a modified continuum model and atomistic calculations on the same underlying disordered energy landscape. We present a theoretical framework that establishes a connection between atomistic tight-binding theory and continuum-based electronic structure models, here a single-band effective mass approximation, and provide such a comparison for the electronic structure of (In,Ga)N quantum wells. In our approach, in principle, the effective masses are the only adjustable parameters since the confinement energy landscape is directly obtained from tight-binding theory. We find that the electronic structure calculated within effective mass approximation and the tight-binding model differ noticeably. However, at least in terms of energy eigenvalues, an improved agreement between the two methods can be achieved by adjusting the band offsets in the continuum model, enabling, therefore, a recipe for constructing a modified continuum model that gives a reasonable approximation of the tight-binding energies. Carrier localization characteristics for energetically low lying, strongly localized states differ, however, significantly from those obtained using the tight-binding model. For energetically higher lying, more delocalized states, good agreement may be achieved. Therefore, the atomistically motivated continuum-based single-band effective mass model established provides a good, computationally efficient alternative to fully atomistic investigations, at least at when targeting questions related to higher temperatures and carrier densities in (In,Ga)N systems.
Recent experimental studies indicate the presence of ballistic hole transport in InGaN multi quantum well (MQW) structures. Widely used drift–diffusion models cannot give insight into this question, since quantum mechanical effects, such as tunneling, are not included in such semi-classical approaches. Also atomistic effects, e.g. carrier localization effects and built-in field variations due to (random) alloy fluctuations, are often neglected in ballistic transport calculations on InGaN quantum well systems. In this work we use atomistic tight-binding theory in conjunction with a non-equilibrium Green’s function approach to study electron and hole ballistic transport in InGaN MQW systems. Our results show that for electrons the alloy microstructure is of secondary importance for their ballistic transport properties, while for hole transport the situation is different. We observe for narrow barrier widths in an InGaN MQW system that (random) alloy fluctuations give rise to extra hole transmission channels when compared to a virtual crystal description of the same system. We attribute this effect to the situation that in the random alloy case, k
∥-vector conservation is broken/relaxed and therefore the ballistic hole transport is increased. However, for wider barrier width this effect is strongly reduced, which is consistent with experimental studies. Our findings also provide a possible explanation for recent experimental results where alloying the barrier between the wells leads to enhanced ballistic (hole) transport in InGaN MQW systems.
Understanding the impact of the alloy micro-structure on carrier transport becomes important when designing III-nitride-based light emitting diode (LED) structures. In this work, we study the impact of alloy fluctuations on the hole carrier transport in (In,Ga)N single and multi-quantum well systems. To disentangle hole transport from electron transport and carrier recombination processes, we focus our attention on uni-polar (p-i-p) systems. The calculations employ our recently established multi-scale simulation framework that connects atomistic tight-binding theory with a macroscale drift-diffusion model. In addition to alloy fluctuations, we pay special attention to the impact of quantum corrections on hole transport. Our calculations indicate that results from a virtual crystal approximation present an upper limit for the hole transport in a p-i-p structure in terms of the current-voltage characteristics. Thus we find that alloy fluctuations can have a detrimental effect on hole transport in (In,Ga)N quantum well systems, in contrast to uni-polar electron transport. However, our studies also reveal that the magnitude by which the random alloy results deviate from virtual crystal approximation data depends on several factors, e.g. how quantum corrections are treated in the transport calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.