Tissue resident memory T cells (TRM) maintain immunity in diverse sites as determined in mouse models, while their establishment and role in human tissues has been difficult to assess. Here, we investigated human lung TRM generation, maintenance and function in airway samples obtained longitudinally from HLA-disparate lung transplant recipients, where donor and recipient T cells could be localized and tracked over time. Donor T cells persist specifically in the lungs (and not blood) of transplant recipients and express high levels of TRM signature markers including CD69, CD103, and CD49a, while lung-infiltrating recipient T cells gradually acquire TRM phenotypes over months in vivo. Single cell transcriptome profiling of airway T cells reveals that donor T cells comprise two TRM-like subsets with varying levels of expression of TRM-associated genes while recipient T cells comprised non-TRM and similar TRM-like subpopulations, suggesting de novo TRM generation. Transplant recipients exhibiting higher frequencies of persisting donor TRM experienced fewer adverse clinical events such as primary graft dysfunction and acute cellular rejection compared to recipients with low donor TRM persistence, suggesting that monitoring TRM dynamics could be clinically informative. Together, our results provide novel spatial and temporal insights into how human TRM develop, function, persist, and impact tissue integrity within the complexities of lung transplantation.
Highlights d Low-calcium media enhance hematopoietic stem cell (HSC) maintenance in vitro d HSCs display low intracellular calcium d Low-HSC calcium is maintained by glycolysis-fueled calcium efflux pumps d Low intracellular calcium inhibits calpain activity, which stabilizes TET enzymes
Cancer cells of primary effusion lymphoma (PEL) often contain both Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). We measured the interplay of human, KSHV, and EBV transcription in a cell culture model of PEL using single-cell RNA sequencing. The data detect widespread trace expression of lytic KSHV genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.