Alumina-supported palladium (Pd) catalysts have previously been shown to hydrodechlorinate trichloroethene (TCE) and other chlorinated compounds in water, at room temperature, and in the presence of hydrogen. The feasibility of this catalytic technology to remediate groundwater of halogenated compounds can be improved by re-designing the Pd material in order to increase catalytic activity. We synthesized and characterized Pd supported on gold nanoparticles (Au NPs) of different Pd loadings. In all cases, we found that these catalysts were considerably more active than Pd NPs, alumina-supported Pd, ard Pd-black (62.0, 12.2, and 0.42 L x g(Pd)(-1) x min(-1), respectively). There is a synergistic effect of the Pd-on-Au bimetallic structure, with the material with the highest TCE hydrodechlorination activity (943 L x g(Pd)(-1) x min(-1)) comprised of Au NPs partially covered by Pd metal. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. The resulting nanoparticle-based materials should be highly suitable as hydrodehalogenation and reduction catalysts for the remediation of various organic and inorganic groundwater contaminants.
Groundwater contaminated by hazardous chlorinated compounds, especially chlorinated ethenes, continues to be a significant environmental problem in industrialized nations. The conventional treatment methods of activated carbon adsorption and air-stripping successfully remove these compounds by way of transferring them from the water phase into the solid or gas phase. Catalysis is a promising approach to remove chlorinated compounds completely from the environment, by converting them into safer, non-chlorinated compounds. Palladium-based materials have been shown to be very effective as hydrodechlorination catalysts for the removal of chlorinated ethenes and other related compounds. However, relatively low catalytic activity and a propensity for deactivation are significant issues that prevent their widespread use in groundwater remediation. Palladiumon-gold bimetallic nanoparticles, in contrast, were recently discovered to exhibit superior catalyst activity and improved deactivation resistance. This new type of material is a significant next-step in the development of a viable hydrodechlorination catalysis technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.