Glioblastoma (GB) is an aggressive primary brain tumor. Despite intensive research over the past 50 years, little advance has been made to improve the poor outcome, with an overall median survival of 14.6 months following standard treatment. Local recurrence is inevitable due to the quiescent cancer stem cells (CSCs) in GB that co-express stemness-associated markers and components of the renin–angiotensin system (RAS). The dynamic and heterogeneous tumor microenvironment (TME) plays a fundamental role in tumor development, progression, invasiveness, and therapy resistance. There is increasing evidence showing the critical role of the RAS in the TME influencing CSCs via its upstream and downstream pathways. Drugs that alter the hallmarks of cancer by modulating the RAS present a potential new therapeutic alternative or adjunct to conventional treatment of GB. Cerebral and GB organoids may offer a cost-effective method for evaluating the efficacy of RAS-modulating drugs on GB. We review the nexus between the GB TME, CSC niche, and the RAS, and propose re-purposed RAS-modulating drugs as a potential therapeutic alternative or adjunct to current standard therapy for GB.
Glioblastoma is the most common and most aggressive primary brain cancer in adults. Standard treatment of glioblastoma consisting of maximal safe resection, adjuvant radiotherapy and chemotherapy with temozolomide, results in an overall median survival of 14.6 months. The aggressive nature of glioblastoma has been attributed to the presence of glioblastoma stem cells which express components of the renin-angiotensin system (RAS). This phase I clinical trial investigated the tolerability and efficacy of a treatment targeting the RAS and its converging pathways in patients with glioblastoma. Patients who had relapsed following standard treatment of glioblastoma who met the trial criteria were commenced on dose-escalated oral RAS modulators (propranolol, aliskiren, cilazapril, celecoxib, curcumin with piperine, aspirin, and metformin). Of the 17 patients who were enrolled, ten completed full dose-escalation of the treatment. The overall median survival was 19.9 (95% CI:14.1-25.7) months. Serial FET-PET/CTs showed a reduction in both tumor volume and uptake in one patient, an increase in tumor uptake in nine patients with decreased (n = 1), unchanged (n = 1) and increased (n = 7) tumor volume, in the ten patients who had completed full dose-escalation of the treatment. Two patients experienced mild side effects and all patients had preservation of quality of life and performance status during the treatment. There is a trend towards increased survival by 5.3 months although it was not statistically significant. These encouraging results warrant further clinical trials on this potential novel, well-tolerated and costeffective therapeutic option for patients with glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.