A B S T R A C TThis paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The longterm demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400-1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100.
NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange 1 D espite two decades of effort to curb emissions of CO 2 and other greenhouse gases (GHGs), emissions grew faster during the 2000s than in the 1990s 1 , and by 2010 had reached ~50 Gt CO 2 equivalent (CO 2 eq) yr −1 (refs 2,3). The continuing rise in emissions is a growing challenge for meeting the international goal of limiting warming to less than 2 °C relative to the pre-industrial era, particularly without stringent climate policies to decrease emissions in the near future 2-4 . As negative emissions technologies (NETs) seem ever more necessary 3,[5][6][7][8][9][10] To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.options, to be able to decide which pathways are most desirable for dealing with climate change.There are distinct classes of NETs, such as: (1) bioenergy with carbon capture and storage (BECCS) 11,12 ; (2) direct air capture of CO 2 from ambient air by engineered chemical reactions (DAC) 13,14 ; (3) enhanced weathering of minerals (EW) 15 , where natural weathering to remove CO 2 from the atmosphere is accelerated and the products stored in soils, or buried in land or deep ocean [16][17][18][19] ; (4) afforestation and reforestation (AR) to fix atmospheric carbon in biomass and soils [20][21][22] ; (5) manipulation of carbon uptake by the ocean, either
We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop-livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. global change | sustainability | GHG emissions | land use T he importance of the livestock sector as a user of natural resources, as a source of livelihoods, and as an engine of economic growth has been the focus of significant attention in the last decade (1-5). As the largest land-use system on Earth, the livestock sector occupies 30% of the world's ice-free surface, contributes 40% of global agricultural gross domestic product, and provides income for more than 1.3 billion people and nourishment for at least 800 million food-insecure people, all the while using vast areas of rangelands, one-third of the freshwater, and one-third of global cropland as feed. In the process, livestock can both contribute valuable nutrients for crops and be responsible for nutrient pollution and land degradation, and they can both provide critically important protein and micronutrients to human diets and contribute to obesity. The sector has many dualities, and the roles played by livestock change depending on location and circumstances. However, there is growing recognition that improving the environmental performance of livestock systems as well as establishing sustainable levels of consumption of animal-sourced foods, are essential for the sustainability of the global food system (5-7).Insufficient attention has been paid to the generation of livestock data at the level of detail required for elucidating their future role in attaining key global sustainability goals. Some of these goals are poverty reduction, food and nutritional security, ecosystem protection, mitigation of greenhouse gases (GHG), and adaptation to climate change, for example. To date, global integrated assessments have included incomplete representations, at best, of the livestock sector (8-11). So...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.