Several hundred catfish species (order: Siluriformes) belonging to 11 families inhabit Africa, of which at least six families are endemic to the continent. Although four of those families are well‐known to belong to the ‘Big‐Africa clade’, no previous study has addressed the phylogenetic placement of the endemic African catfish family Austroglanididae in a comprehensive framework with molecular data. Furthermore, interrelationships within the ‘Big‐Africa clade’, including the most diverse family Mochokidae, remain unclear. This study was therefore designed to help reconstruct inter‐ and intrarelationships of all currently valid mochokid genera, to infer their position within the ‘Big Africa clade’ and to establish a first molecular phylogenetic hypothesis of the relationships of the enigmatic Austroglanididae within the Siluriformes. We assembled a comprehensive mitogenomic dataset comprising all protein coding genes and representing almost all recognized catfish families (N = 33 of 39) with carefully selected species (N = 239). We recovered the monophyly of the previously identified multifamily clades ‘Big Asia’ and ‘Big Africa’ and determined Austroglanididae to be closely related to Pangasiidae, Ictaluroidea and Ariidae. Mochokidae was recovered as the sister group to a clade encompassing Auchenoglanididae, Claroteidae, Malapteruridae and the African Schilbeidae, albeit with low statistical support. The two mochokid subfamilies Mochokinae and Chiloglanidinae as well as the chiloglanid tribe Atopochilini were recovered as reciprocally monophyletic. The genus Acanthocleithron forms the sister group of all remaining Mochokinae, although with low support. The genus Atopodontus is the sister group of all remaining Atopochilini. In contrast to morphological reconstructions, the monophyly of the genus Chiloglanis was strongly supported in our analysis, with Chiloglanis macropterus nested within a Chiloglanis sublineage encompassing only other taxa from the Congo drainage. This is an important result because the phylogenetic relationships of C. macropterus have been controversial in the past, and because we and other researchers assumed that this species would be resolved as sister to most or all other members of Chiloglanis. The apparent paraphyly of Synodontis with respect to Microsynodontis provided an additional surprise, with Synodontis punu turning out to be the sister group of the latter genus.
Located in the central region of northern Nigeria, the Jos Plateau covers approximately 9,400 km² with an average altitude of 1,280 m and constitutes a unique terrestrial ecoregion known as the Jos Plateau forest-grassland mosaic. The biota of the Jos Plateau include endemic elements, but very limited information is available on its ichthyofauna. This is despite the fact that the ancient plateau contributes to several large rivers spanning multiple major drainage systems including the Niger and Benue Rivers, and Lake Chad. This study provides the first species list for the fishes of the Jos Plateau based mainly on 175 DNA barcoded museum voucher specimens representing 20 species, and another three species without a DNA barcode. In total, 23 species from eight families and 17 genera were collected from the Jos Plateau including five putatively new species, four in the family Cyprinidae and one in the Clariidae. With ten species, the Cyprinidae is the most diverse fish family on the Jos Plateau, followed by Clariidae and Cichlidae, each with three species. The study also provides data on species distribution and habitat parameters including information on water chemistry that strongly suggests that selected water bodies are heavily impacted by anthropogenic activities. Urgent management steps are required to preserve the unique and diverse fish communities of the Jos Plateau and their habitats.
The chromosomes of male and female individuals of Enteromius callipterus [1] were assessed in this study with the objective of determining the diploid chromosome and karyotype. The samples were obtained from the Tahoss River, Jos Plateau, and the assessment of the chromosomes was conducted using the conventional Giemsa staining technique. The study reveals that the male individual of E. callipterus has a diploid chromosome number of 2n = 50, the fundamental number of autosomal arms (NFa) of 82, and a karyotype formula of 2n = 14M + 4m + 32t. However, none of the spreads obtained for the female individuals were either equal to or below the common diploid chromosome number of 50 known for members of the genus. The two spreads presented here were of 2n equal to 54 and 58. Although sex dimorphism is rare within the genus, the present results suggest E. callipterus show sexual dimorphism at the chromosomal level.
In this study, Enteromius parablabes [1] was analyzed with the aim of providing baseline information regarding the diploid chromosome number and karyotype differences of both sexes. The diploid chromosome number (2n) was 50 for both sexes, and this corresponds to the diploid chromosome number reported for most small African Barbus species. The fundamental number (NFa) of the male and female was 81 and 98 respectively. The first pair of metaphase chromosomes which has been suggested to be a marker for the small African Barbus group was conspicuously larger in the female karyotype.The karyotype of the female consisted more of metacentric (39m + 7sm + 2st + 2t) which is common in the group while the karyotype of the male which consisted more of telocentric chromosomes (10m + 21st + 19T) is scarce. The chromosomal number obtained for E. parablabes demonstrates its diploid status in the context of the ploidy lines characteristic of the African Barbus assemblage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.