Periostin is a fasciclin-containing adhesive glycoprotein that facilitates the migration and differentiation of cells that have undergone epithelial-mesenchymal transformation during embryogenesis and in pathological conditions. Despite the importance of post-transformational differentiation as a general developmental mechanism, little is known how periostin's embryonic expression is regulated. To help resolve this deficiency, a 3.9-kb periostin proximal promoter was isolated and shown to drive tissue-specific expression in the neural crest-derived Schwann cell lineage and in a subpopulation of periostin-expressing cells in the cardiac outflow tract endocardial cushions. In order to identify the enhancer and associated DNA binding factor(s) responsible, in vitro promoter dissection was undertaken in a Schwannoma line. Ultimately a 304-bp(peri) enhancer was identified and shown to be capable of recapitulating 3.9 kb(peri-lacZ)in vivo spatiotemporal patterns. Further mutational and EMSA analysis helped identify a minimal 37-bp region that is bound by the YY1 transcription factor. The 37-bp enhancer was subsequently shown to be essential for in vivo 3.9 kb(peri-lacZ) promoter activity. Taken together, these studies identify an evolutionary-conserved YY1-binding 37-bp region within a 304-bp periostin core enhancer that is capable of regulating simultaneous novel tissue-specific periostin expression in the cardiac outflow-tract cushion mesenchyme and Schwann cell lineages.
Systemic loss-of-function studies have demonstrated that Pax3 transcription factor expression is essential for dorsal neural tube, early neural crest and muscle cell lineage morphogenesis. Cardiac neural crest cells participate in both remodeling of the pharyngeal arch arteries and outflow tract septation during heart development, but the lineage specific role of Pax3 in neural crest function has not yet been determined. To gain insight into the requirement of Pax3 within the neural crest, we conditionally deleted Pax3 in both the premigratory and migratory neural crest populations via Wnt1-Cre and Ap2α-Cre and via P0-Cre in only the migratory neural crest, and compared these phenotypes to the pulmonary atresia phenotype observed following the systemic loss of Pax3. Surprisingly, using Wnt1-Cre deletion there are no resultant heart defects despite the loss of Pax3 from the premigratory and migratory neural crest. In contrast, earlier premigratory and migratory Ap2α-Cre mediated deletion resulted in double outlet right ventricle alignment heart defects. In order to assess the tissue-specific contribution of neural crest to heart development, genetic ablation of neural crest lineage using a Wnt1-Cre-activated diphtheria toxin fragment-A cell-killing system was employed. Significantly, ablation of Wnt1-Cre-expressing neural crest cells resulted in fully penetrant persistent truncus arteriosus malformations. Combined, the data show that Pax3 is essential for early neural crest progenitor formation, but is not required for subsequent cardiac neural crest progeny morphogenesis involving their migration to the heart or septation of the outflow tract.
Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically defined Pax3 (splotch) mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of the Pax3 transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling.
Background: Calmodulin mutations are associated with arrhythmia syndromes in humans. Exome sequencing previously identified a de novo mutation in CALM1 resulting in a p.N98S substitution in a patient with sinus bradycardia and stress-induced bidirectional ventricular ectopy. The objectives of the present study were to determine if mice carrying the N98S mutation knocked into Calm1 replicate the human arrhythmia phenotype and to examine arrhythmia mechanisms. Methods: Mouse lines heterozygous for the Calm1 N98S allele (Calm1 N98S/+ ) were generated using CRISPR/Cas9 technology. Adult mutant mice and their wildtype littermates (Calm1 +/+ ) underwent electrocardiographic monitoring. Ventricular de- and repolarization was assessed in isolated hearts using optical voltage mapping. Action potentials and whole-cell currents as well as [Ca 2+ ] i were measured in single ventricular myocytes using the patch-clamp technique and fluorescence microscopy, respectively. The microelectrode technique was employed for in situ membrane voltage monitoring of ventricular conduction fibers. Results: Two biologically independent knock-in mouse lines heterozygous for the Calm1 N98S allele were generated. Calm1 N98S/+ mice of either sex and line exhibited sinus bradycardia, QT c interval prolongation and catecholaminergic bidirectional ventricular tachycardia. Male mutant mice also showed QRS widening. Pharmacological blockade and activation of β-adrenergic receptors rescued and exacerbated, respectively, the long QT phenotype of Calm1 N98S/+ mice. Optical and electrical assessment of membrane potential in isolated hearts and single left ventricular myocytes, respectively, revealed β-adrenergically induced delay of repolarization. β-adrenergic stimulation increased peak density, slowed inactivation and left-shifted the activation curve of I Ca.L significantly more in Calm1 N98S/+ vs Calm1 +/+ ventricular myocytes, increasing late I Ca.L in the former. Rapidly paced Calm1 N98S/+ ventricular myocytes showed increased propensity to delayed afterdepolarization-induced triggered activity, whereas in situ His-Purkinje fibers exhibited increased susceptibility for pause-dependent early afterdepolarizations. Epicardial mapping of Calm1 N98S/+ hearts showed that both reentry and focal mechanisms contribute to arrhythmogenesis. Conclusions: Heterozygosity for the Calm1 N98S mutation is causative of an arrhythmia syndrome characterized by sinus bradycardia, QRS widening, adrenergically mediated QT c interval prolongation and bidirectional ventricular tachycardia. β-adrenergically induced I Ca.L dysregulation contributes to the long QT phenotype. Pause-dependent early afterdepolarizations and tachycardia-induced delayed afterdepolarizations originating in the His-Purkinje network and ventricular myocytes, respectively, constitute potential sources of arrhythmia in Calm1 N98S/+ hearts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.