The population structure of Tilapia zillii (Gervais 1848) from three reservoirs in Nigeria, Osun State (Opa, Osu and Igun) was determined by employing morphological and molecular (Random Amplified Polymorphic DNA) methods. For morphological studies, 25 morphometric measurements and six meristic counts were recorded on 40 individuals within each population. Principal Component Analysis (PCA) was performed on the morphometric and meristic data using the PAST software. For RAPD studies, genomic DNA was extracted from caudal fin tissue using CTAB method and five primers were used to initiate PCR amplifications. All the clusters produced by the Principal components analysis (PCA) of the morphometric and meristic parameters overlapped indicating a low level of genetic differentiation between the three populations of T. zillii studied. The UPGMA cluster diagram from RAPD analysis identified two major genotypic groups with inter and intra group relationships. All individuals in the first cluster were from the Osu reservoir, while individuals from Opa and Igun reservoirs constituted the second cluster. Nei's unbiased measure of genetic distances was 0.8532, 0.7321 and 0.7111 for Osu, Igun and Opa populations respectively. This revealed that Opa and Igun populations were genetically closer, while Osu populations is distant from them. The results suggest that the RAPD technique could be used to differentiate populations of T. zillii. However, additional methods such as microsatellite and sequence analysis can be used to maximize the efficiency of genetic differentiation studies.
Inland fisheries are an important source of protein and income for people in Africa, and sustainable fisheries management requires knowledge of regional stocks. Presently, information regarding genetic diversity of African freshwater fishes is very limited. Here we present findings from a spatial analysis of genetic patterns in the African bonytongue, Heterotis niloticus, an important component of inland fisheries in West Africa. The species is common throughout Western and Central Africa and the Nile Basin; and has been introduced for aquaculture in locations across Africa. Nigeria has the largest fishery for African bonytongues, representing ~86% of the global total. Recent declines in yields at some Nigerian locations, however, suggest current levels of exploitation may be unsustainable. Habitat degradation also may be impacting some stocks. Despite its commercial and nutritional importance, the African bonytongue has been the subject of scant research to support management. We examined patterns of genetic diversity in natural populations of H. niloticus at four locations in Nigeria, including Kainji Lake, a reservoir on the Niger River in north-central Nigeria, and three southtern localities (Ethiope River, Igbokoda River, and Epe Lagoon), as well fish from the Ouémé River delta near Porto Novo, Benin. Eighty-five specimens were genotyped for nine microsatellite-loci. Genetic diversity estimates were highest at Kainji Lake, and substantially lower at southern localities. High levels of genetic differentiation were detected between samples from Kainji Lake and those from the southern localities. Low, yet significant FST values were observed among samples from southern Nigerian localities that were more differentiated from the sample from nearby coastal Benin. We thus recommend that African bonytongues from the five locations be considered distinct genetic stocks and managed accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.