We have characterized a glycosylated, 31 amino-acid peptide of 4932 Da isolated from Drosophila melanogaster males. The mature peptide contains a sugar moiety of 1184 Da at a NDT consensus glycosylation site and a disulfide bond. It is synthesized in the male ejaculatory duct via a 54 amino-acid precursor containing an N-terminal signal peptide and Arg-Lys at the C-terminus which is cleaved off during maturation. The gene contains an intron of 53 bp and is localized in the cytological region 99B of the D. melanogaster genome. The peptide is therefore named DUP99B (for ductus ejaculatorius peptide, cytological localization 99B). The C-terminal parts of mature DUP99B and D. melanogaster sex-peptide (ACP70A) are highly homologous. Injected into virgin females, DUP99B elicits the same postmating responses as sex-peptide (increased oviposition, reduced receptivity). These effects are also induced by de-glycosylated native peptide or synthetic DUP99B lacking the sugar moiety. Presence of the glycosyl group, however, decreases the amount needed to elicit the postmating responses. Homologies in the coding regions of the two exons of DUP99B and sex-peptide, respectively, suggest that the two genes have evolved by gene duplication. Thus, we consider these two genes to be members of the new sex-peptide gene family.
Sex-Peptide (SP) and the peptide DUP99B elicit two postmating responses in Drosophila melanogaster females: receptivity is reduced and oviposition is increased. Both are synthesized in the male genital tract and transferred into the female during copulation. To elucidate their function, we characterized the binding properties of SP and DUP99B in females. Cryostat sections of adult females were incubated with alkaline phosphatase (AP)-tagged peptides. In virgin females, both peptides have specific target sites in the nervous system and in the genital tract. The binding pattern is almost identical for both peptides. Incubation of sections of mated females confirm that some of these target sites correspond to the in vivo targets of the two peptides. Neuronal binding is dependent on an intact C-terminal sequence of SP, binding in the genital tract is less demanding in terms of amino acid sequence requirement. On affinity blots the AP-SP probe binds to membrane proteins extracted from abdomen and head plus thorax, respectively. The binding proteins in the nervous system and the genital tract differ in their molecular properties. Calculation of dissociation constants (K(d)), and also determination of the minimal peptide concentrations necessary for binding, indicate that SP is the more important peptide inducing the postmating responses. Our results suggest that binding of SP in the nervous system is responsible for eliciting the postmating responses, whereas binding in the genital tract reflects the presence of a peptide transporter.
Drosophila melanogaster sex peptide (SP) and Ductus ejaculatorius peptide (DUP99B) are male pheromones transferred in the seminal fluid to the female during copulation. Both reduce sexual receptivity and stimulate oviposition in females. The presence of high-affinity SP and DUP99B binding sites in the female were investigated by incubation of cryostat tissue sections with 125 I-iodinated peptides and subsequent autoradiography. We found that in adult females radiolabeled SP and DUP99B bind to peripheral nerves, the subesophageal ganglion, the cervical connective, to discrete parts of the thoracic ganglion, and to the genital tract. Weak and uniform labeling was detected in the neuropil of the brain and the thoracic ganglion. The labeling pattern in the nervous system suggests binding of the peptides to sensory afferents or glial cells. Scatchard analysis of the binding of 125 I-DUP99B to antennal nerves yielded a dissociation constant K d of 6.4 nM. Competition experiments with peptide fragments show that the peptides bind with their homologous C-terminal regions. Binding sites in the nervous system of females are established throughout sexual maturation. Prominent binding of the peptides to afferent nerves suggests modification of sensory input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.