Lead oxide (PbO) is a candidate direct conversion material for medical X-ray applications. We produced various samples and detectors with thick PbO layers. X-ray performance data such as dark current, charge generation yield and temporal behavior were evaluated on small samples. The influence of the metal contacts was studied in detail. We also covered large a-Si thin-film transistor (TFT)-plates with PbO. Imaging results from a large detector with an active area of 18 cm 20 cm are presented. The detector has 960 1080 pixels with a pixel pitch of 184 m. The modulation transfer function at the Nyquist frequency of 2.72 linepairs/mm is 50%. Finally, a full size X-ray image is presented.
Lead oxide (PbO) is a candidate direct conversion material for medical X-ray applications. We produced various samples and detectors with thick PbO layers. X-ray performance data such as dark current, charge generation yield and temporal behavior were evaluated on small samples. The influence of the metal contacts was studied in detail. We also covered large a-Si thin-film transistor (TFT)-plates with PbO. Imaging results from a large detector with an active area of 18 cm × 20 cm are presented. The detector has 960 × 1080 pixels with a pixel pitch of 184 ?m. The modulation transfer function at the Nyquist frequency of 2.72 linepairs/mm is 50%. Finally, a full size X-ray image is presented
Imaging detectors for medical X-ray and computed tomography (CT) applications have undergone many improvements and technology changes over time. But most (dynamic) detectors sold in this field still rely on indirect conversion, using scintillators and photodiodes to convert the X-ray quanta ultimately into electrical signals. Direct conversion detectors promise very high spatial resolution and high signal-to-noise ratios. Some direct conversion materials may allow for counting or even energy resolving detection of the X-ray quanta. Based on this, for example spectrally resolving CT systems are becoming an interesting option for the next decade. This contribution highlights the requirements of advanced medical X-ray and CT imaging and reviews examples of status and progress in the field. The emphasis is on the direct conversion sensors for pixelated detectors, but considerations on read-out concepts and on associated challenges such as interconnects will also be presented. Finally, the most burning issues, such as count rate limitations and polarization effects, will be discussed from an application point of view.
Flat X-ray detectors based on CsI:Tl scintillators and amorphous silicon photodiodes are known to exhibit temporal artefacts (ghost images) which decay over time. Previously, these temporal artefacts have been attributed mainly to residual signals from the amorphous silicon photodiodes. More detailed experiments presented here show that a second class of effects, the so-called gain effects, also contributes significantly to the observed temporal artefacts. Both the residual signals and the photodiode gain effect have been characterized under various exposure conditions in the study presented here. The results of the experiments quantitatively show the decay of the temporal artefacts. Additionally, the influence of the detector's reset light on both effects in the photodiode has been studied in detail. The data from the measurements is interpreted based on a simple trapping model which suggests a strong link between the photodiode residual signals and the photodiode gain effect. For the residual signal effect a possible correction scheme is described. Furthermore, the relevance of the remaining temporal artefacts for the applications is briefly discussed for both the photodiode residual signals and the photodiode gain effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.