Although the aetiology of systemic lupus erythematosus (SLE) is unclear, dysregulated B cell responses have been implicated. Here we show that an unusual CD11chiT-bet+ B cell subset, with a unique expression profile including chemokine receptors consistent with migration to target tissues, is expanded in SLE patients, present in nephrotic kidney, enriched for autoreactive specificities and correlates with defined clinical manifestations. IL-21 can potently induce CD11chiT-bet+ B cells and promote the differentiation of these cells into Ig-secreting autoreactive plasma cells. While murine studies have identified a role for T-bet-expressing B cells in autoimmunity, this study describes and exemplifies the importance of CD11chiT-bet+ B cells in human SLE.
Pardi and colleagues report on a vaccine platform in which purified, antigen-encoding, nucleoside-modified mRNA is encapsulated in lipid nanoparticles. Immunization with this vaccine elicits potent T follicular helper cell, germinal center B cell, and protective, neutralizing antibody responses.
BLyS (also called BAFF, TALL-1, THANK, and zTNF4), a TNF superfamily member, binds two receptors, TACI and BCMA, and regulates humoral immune responses [1-7]. These two receptors also bind APRIL [7-10], another TNF superfamily member. The results from TACI(-/-) and BCMA(-/-) mice suggest the existence of additional receptor(s) for BLyS. The TACI knockout gives the paradoxical result of B cells being hyperresponsive, suggesting an inhibitory role for this receptor [11, 12], while BCMA null mice have no discernable phenotype [13]. Here we report the identification of a third BLyS receptor (BR3; BLyS receptor 3). This receptor is unique in that, in contrast to TACI and BCMA, BR3 only binds BLyS. Treatment of antigen-challenged mice with BR3-Fc inhibited antibody production, indicating an essential role for BLyS, but not APRIL, in this response. A critical role for BR3 in B cell ontogeny is underscored by our data showing that the BR3 gene had been inactivated by a discrete, approximately 4.7 kb gene insertion event that disrupted the 3' end of the BR3 gene in A/WySnJ mice, which lack peripheral B cells.
The age-associated B cell subset has been the focus of increasing interest over the last decade. These cells have a unique cell surface phenotype and transcriptional signature, and they rely on TLR7 or TLR9 signals in the context of Th1 cytokines for their formation and activation. Most are antigen-experienced memory B cells that arise during responses to microbial infections and are key to pathogen clearance and control. Their increasing prevalence with age contributes to several well-established features of immunosenescence, including reduced B cell genesis and damped immune responses. In addition, they are elevated in autoimmune and autoinflammatory diseases, and in these settings they are enriched for characteristic autoantibody specificities. Together, these features identify age-associated B cells as a subset with pivotal roles in immunological health, disease, and aging. Accordingly, a detailed understanding of their origins, functions, and physiology should make them tractable translational targets in each of these settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.