Basic transition state theory is used to describe the activation thermodynamics for phospholipid flip-flop in planar-supported lipid bilayers (PSLBs) prepared by the Langmuir-Blodgett/Langmuir-Schaeffer method. The kinetics of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) flip-flop were determined as a function of temperature and lateral surface pressure using sum-frequency vibrational spectroscopy (SFVS). From the temperature and lateral pressure dependent DSPC flip-flop kinetics, a complete description of the activation thermodynamics for flip-flop in the gel state, including free energy of activation (DeltaG(++)), area of activation (Deltaa(++)), and entropy of activation (DeltaS(++)), was obtained. The free energy barrier for flip-flop of DSPC was determined to be DeltaG(++) = 105 +/- 2 kJ/mol at 40 degrees C at a deposition surface pressure of 30 mN/m. The free energy barrier was found to consist of large opposing entropic and enthalpic contributions. The influence of alkyl chain length on the activation thermodynamics of flip-flop was also investigated. Decreasing the alkyl chain length led to a decrease in DeltaG(++) due primarily to an increase in DeltaS(++). The values obtained here are compared to previous studies investigating flip-flop by vesicle based methods.
SummaryA resident of interior Alaska, was diagnosed with an Orthopoxvirus infection. Phylogenetic analysis revealed it is a novel, previously undescribed Orthopoxvirus species. Phylogenetically, the virus is sister to recognized Old World orthopoxviruses, rather than North American Orthopoxvirus species.
In September 2006, we investigated a cluster of 9 patients who developed Enterococcus gallinarum infection after total knee arthroplasty. Isolates recovered from these patients were from the same outbreak strain. Although all 9 patients were monitored by the same healthcare personnel, were given spinal anesthesia, and had the same specific type of wound irrigation procedure performed during their hospitalization, the source or sources of these infections were not identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.