The COVID-19 pandemic has driven numerous studies of airborne-driven transmission risk primarily through two methods: Wells–Riley and computational fluid dynamics (CFD) models. This effort provides a detailed comparison of the two methods for a classroom scenario with masked habitants and various ventilation conditions. The results of the studies concluded that (1) the Wells–Riley model agrees with CFD results without forced ventilation (6% error); (2) for the forced ventilation cases, there was a significantly higher error (29% error); (3) ventilation with moderate filtration is shown to significantly reduce infection transmission probability in the context of a classroom scenario; (4) for both cases, there was a significant amount of variation in individual transmission route infection probabilities (up to 220%), local air patterns were the main contributor driving the variation, and the separation distance from infected to susceptible was the secondary contributor; (5) masks are shown to have benefits from interacting with the thermal plume created from natural convection induced from body heat, which pushes aerosols vertically away from adjacent students.
Recent studies have indicated that COVID-19 is an airborne disease, which has driven conservative social distancing and widescale usage of face coverings. Airborne virus transmission occurs through droplets formed during respiratory events (breathing, speaking, coughing, and sneezing) associated with the airflow through a network of nasal and buccal passages. The airflow interacts with saliva/mucus films where droplets are formed and dispersed, creating a route to transmit SARS-CoV-2. Here, we present a series of numerical simulations to investigate droplet dispersion from a sneeze while varying a series of human physiological factors that can be associated with illness, anatomy, stress condition, and sex of an individual. The model measures the transmission risk utilizing an approximated upper respiratory tract geometry for the following variations: (1) the effect of saliva properties and (2) the effect of geometric features within the buccal/nasal passages. These effects relate to natural human physiological responses to illness, stress, and sex of the host as well as features relating to poor dental health. The results find that the resulting exposure levels are highly dependent on the fluid dynamics that can vary depending on several human factors. For example, a sneeze without flow in the nasal passage (consistent with congestion) yields a 300% rise in the droplet content at 1.83 m (≈6 ft) and an increase over 60% on the spray distance 5 s after the sneeze. Alternatively, when the viscosity of the saliva is increased (consistent with the human response to illness), the number of droplets is both fewer and larger, which leads to an estimated 47% reduction in the transmission risk. These findings yield novel insight into variability in the exposure distance and indicate how physiological factors affect transmissibility rates. Such factors may partly relate to how the immune system of a human has evolved to prevent transmission or be an underlying factor driving superspreading events in the COVID-19 pandemic.
Miniature trailing-edge effectors are segmented gurney flaps that can deploy to achieve multipurpose functions, such as performance enhancement, noise/vibration control, and/or load control on rotor blades. The unsteady aerodynamics of miniature trailing-edge effectors and a déployable plain flap (with an equivalent lift gain) are quantifled experimentally at a reduced frequency of 0.21 and a Reynolds number of 1 x lO". These experiments are also simulated using computational fluid dynamics. The combination of the wind tunnel experiments and computational fluid dynamics are used to quantify the aerodynamic effects of miniature trailing-edge effector deployment to compare their unsteady aerodynamics to plain flaps, and to evaluate the fluid dynamics of miniature trailing-edge effectors against experimental data. The current experiments display unsteady aerodynamics that corroborate previous computational fluid dynamics flndings that indicate that miniature trailing-edge effectors shed on-surface vortices during deployment, affecting the unsteady aerodynamics of the system. Computational fluid dynamics also predicted that miniature trailing-edge effectors require 1/55 power to deploy compared to a plain-flap configuration. Power reduction is a key attractor for the integration of de vices on smart rotors. This work is concluded with an effort that displays that the low power requirement of miniature trailing-edge effectors enable simple deployment methods, such as the use of pressure differentials inherent to the rotor blades. The proposed pneumatic miniature trailing-edge effector configuration was tested at centrifugal forces representative of helicopter rotor blades.Ci cf" (-norm Cf C CL CM
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.