Emulsion styrene—butadiene rubber (ESBR) has been the workhorse of the tire industry since World War II. With the development of solution polymers, ESBR has seen a steady decrease in its use in tire applications. A novel ESBR has been developed which imparts some of the rheological behavior previously only observed in solution polymers. This new ESBR was prepared by blending a high molecular weight elastomer with a low molecular weight elastomer, each having a unique styrene-butadiene composition. A two-phase co-continuous morphology was observed by scanning probe microscopy when the bound styrene difference between the two components was greater than 18%, consistent with the two glass transition temperatures measured by thermal analysis. Blending also served to reduce the amount of very high molecular weight material (> 107 g/mol) readily observed in 1502- and 1712-type polymers by thermal field flow fractionation (ThFFF). ThFFF was found to be superior to size exclusion chromatography for fully characterizing the molecular weight and molecular weight distribution of the polymers. Time—temperature superposition was performed to characterize the viscoelastic behavior in the rubbery plateau and terminal zones. The ESBR blends showed a cross-over in the terminal flow region that was not observed in 1502- and 1712-type polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.