For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
Cell-based diabetes therapy requires an abundant cell source. Here, we report reversal of diabetes for more than 100 d in cynomolgus macaques after intraportal transplantation of cultured islets from genetically unmodified pigs without Gal-specific antibody manipulation. Immunotherapy with CD25-specific and CD154-specific monoclonal antibodies, FTY720 (or tacrolimus), everolimus and leflunomide suppressed indirect activation of T cells, elicitation of non-Gal pig-specific IgG antibody, intragraft expression of proinflammatory cytokines and invasion of infiltrating mononuclear cells into islets.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a recently described arterivirus responsible for disease in swine worldwide. Comparative sequence analysis of 3′-terminal structural genes of the single-stranded RNA viral genome revealed the presence of two genotypic classes of PRRSV, represented by the prototype North American and European strains, VR-2332 and Lelystad virus (LV), respectively. To better understand the evolution and pathogenicity of PRRSV, we obtained the 12,066-base 5′-terminal nucleotide sequence of VR-2332, encoding the viral replication activities, and compared it to those of LV and other arteriviruses. VR-2332 and LV differ markedly in the 5′ leader and sections of the open reading frame (ORF) 1a region. The ORF 1b sequence was nearly colinear but varied in similarity of proteins encoded in identified regions. Furthermore, molecular and biochemical analysis of subgenomic mRNA (sgmRNA) processing revealed extensive variation in the number of sgmRNAs which may be generated during infection and in the lengths of noncoding sequence between leader-body junctions and the translation-initiating codon AUG. In addition, VR-2332 and LV select different leader-body junction sites from a pool of similar candidate sites to produce sgmRNA 7, encoding the viral nucleocapsid protein. The presence of substantial variations across the entire genome and in sgmRNA processing indicates that PRRSV has evolved independently on separate continents. The near-simultaneous global emergence of a new swine disease caused by divergently evolved viruses suggests that changes in swine husbandry and management may have contributed to the emergence of PRRS.
Type 2 (or North American-like) porcine reproductive and respiratory syndrome virus (PRRSV) was first recorded in 1987 in the United States and now occurs in most commercial swine industries throughout the world. In this study, we investigated the epidemiological and evolutionary behaviors of type 2 PRRSV. Based on phylogenetic analyses of 8,624 ORF5 sequences, we described a comprehensive picture of the diversity of type 2 PRRSVs and systematically classified all available sequences into lineages and sublineages, including a number of previously undescribed lineages. With the rapid growth of sequence deposition into the databases, it would be technically difficult for veterinary researchers to genotype their sequences by reanalyzing all sequences in the databases. To this end, a set of reference sequences was established based on our classification system, which represents the principal diversity of all available sequences and can readily be used for further genotyping studies. In addition, we further investigated the demographic histories of these lineages and sublineages by using Bayesian coalescence analyses, providing evolutionary insights into several important epidemiological events of type 2 PRRSV. Moreover, by using a phylogeographic approach, we were able to estimate the transmission frequencies between the pig-producing states in the United States and identified several states as the major sources of viral spread, i.e., "transmission centers." In summary, this study represents the most extensive phylogenetic analyses of type 2 PRRSV to date, providing a basis for future genotyping studies and dissecting the epidemiology of type 2 PRRSV from phylogenetic perspectives.Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important virus which infects swine and causes reproductive failure in sows and respiratory problems in growing pigs. As a member of the Arteriviridae family (15,47,59,66), PRRSV has a positive-sense RNA genome of approximately 15 kb that carries eight overlapping open reading frames (ORFs), designated ORFs 1a, 1b, and 2 to 7 (15, 47). Among these ORFs, ORF5, encoding the major envelope glycoprotein, is an ideal candidate for phylogenetic tree construction, because it exhibits marked genetic variation within its relatively short length.PRRSV can be classified into two genotypes: type 1 (EUlike), comprising mainly European strains and represented by the prototype strain Lelystad (75); and type 2 (NA-like), comprising mainly North American strains and represented by the prototype strain VR-2332 (14). Although clinical diseases are similar following infections with these viruses, they differ significantly in terms of antigenic properties (18, 74) and genetic content (42,48,51). This has sparked hot debates on the evolutionary history and divergence time of these two genotypes (24,25,29,58), but no substantial consensus has been reached.Classification and epidemiology of type 2 PRRSV. Clinical disease due to type 2 PRRSV was first recorded in 1987 in the United Stat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.