A systematic survey of the acetylcholine-mimetic 2,4-dioxa-3-phosphadecalins as irreversible inhibitors of acetylcholinesterase revealed hitherto overlooked properties as far as the kinetic mechanisms of interaction are concerned. As a support to past and future work in this field, we describe the kinetics of eight reaction schemes that may be found in irreversible enzyme modification and compare them with two mechanism of reversible, slow-binding inhibition. The relevant kinetic equations and their associated graphical representations are given for all mechanisms, and concrete examples illustrate their practical use. Since irreversible inhibition is a time-dependent phenomenon, kinetic analysis is greatly facilitated by fitting the appropriate integrated rate equations to reaction-progress curves by nonlinear regression. This primary scrutiny provides kinetic parameters that are indispensable tools for diagnosing the kinetic mechanism and for calculating inhibition constants. Numerical integration of sets of differential equations is an additional useful investigation tool in critical situations, e.g., when inhibitors are unstable and/or act as irreversible modifiers only temporarily.
A series of substituted dipiperidine compounds have been synthesized and identified as selective CCR2 antagonists. Combining the most favorable substituents led to the discovery of remarkably potent CCR2 antagonists displaying IC50 values in the nanomolar range. Compound 7a had outstanding selectivity over CCR1, CCR3, CCR4, CCR5, CCR6, CCR7, and CCR8 and showed excellent efficacy in adjuvant-induced arthritis model, collagen-induced arthritis model, and allergic asthma model.
Improved procedures for the regioselective preparation of ethyl 1,5‐diarylpyrazole‐3‐carboxylates are described. The new procedures utilize readily prepared lithium aroylpyruvate intermediates which, when combined with arylphenylhydrazine hydrochlorides form 1,5‐diarylpyrazole‐3‐carboxylates regioselectively in good to excellent yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.