BackgroundOptic nerve injury is an important pathological component in neurodegenerative diseases such as traumatic optic neuropathies and glaucoma. The molecular signaling pathway(s) critical for retinal ganglion cell (RGC) death after axonal insult, however, is/are not fully defined. RGC death after axonal injury is known to occur by BAX-dependent apoptosis. Two transcription factors JUN (the canonical target of JNK) and DDIT3 (CHOP; a key mediator of the endoplasmic reticulum stress response) are known to be important apoptotic signaling molecules after axonal injury, including in RGCs. However, neither Jun nor Ddit3 deficiency provide complete protection to RGCs after injury. Since Jun and Ddit3 are important apoptotic signaling molecules, we sought to determine if their combined deficiency might provide additive protection to RGCs after axonal injury.MethodsTo determine if DDIT3 regulated the expression of JUN after an axonal insult, mice deficient for Ddit3 were examined after optic nerve crush (ONC). In order to critically test the importance of these genes in RGC death after axonal injury, RGC survival was assessed at multiple time-points after ONC (14, 35, 60, and 120 days after injury) in Jun, Ddit3, and combined Jun/Ddit3 deficient mice. Finally, to directly assess the role of JUN and DDIT3 in axonal degeneration, compound actions potentials were recorded from Jun, Ddit3, and Jun/Ddit3 deficient mice after ONC.ResultsSingle and combined deficiency of Jun and Ddit3 did not appear to alter gross retinal morphology. Ddit3 deficiency did not alter expression of JUN after axonal injury. Deletion of both Jun and Ddit3 provided significantly greater long-term protection to RGCs as compared to Jun or Ddit3 deficiency alone. Finally, despite the profound protection to RGC somas provided by the deficiency of Jun plus Ddit3, their combined loss did not lessen axonal degeneration.ConclusionsThese results suggest JUN and DDIT3 are independently regulated pro-death signaling molecules in RGCs and together account for the vast majority of apoptotic signaling in RGCs after axonal injury. Thus, JUN and DDIT3 may represent key molecular hubs that integrate upstream signaling events triggered by axonal injury with downstream transcriptional events that ultimately culminate in RGC apoptosis.
The ecotropic virus integration site 1 (EVI1) transcription factor is associated with human myeloid malignancy of poor prognosis and is overexpressed in 8–10% of adult AML and strikingly up to 27% of pediatric MLL-rearranged leukemias. For the first time, we report comprehensive genomewide EVI1 binding and whole transcriptome gene deregulation in leukemic cells using a combination of ChIP-Seq and RNA-Seq expression profiling. We found disruption of terminal myeloid differentiation and cell cycle regulation to be prominent in EVI-induced leukemogenesis. Specifically, we identified EVI1 directly binds to and downregulates the master myeloid differentiation gene Cebpe and several of its downstream gene targets critical for terminal myeloid differentiation. We also found EVI1 binds to and downregulates Serpinb2 as well as numerous genes involved in the Jak-Stat signaling pathway. Finally, we identified decreased expression of several ATP-dependent P2X purinoreceptors genes involved in apoptosis mechanisms. These findings provide a foundation for future study of potential therapeutic gene targets for EVI1-induced leukemia.
Inv(3q26) and t(3:3)(q21;q26) are specific to poor-prognosis myeloid malignancies, and result in marked overexpression of EVI1, a zinc-finger transcription factor and myeloid-specific oncoprotein. Despite extensive study, the mechanism by which EVI1 contributes to myeloid malignancy remains unclear. Here we describe a new mouse model that mimics the transcriptional effects of 3q26 rearrangement. We show that EVI1 overexpression causes global distortion of hematopoiesis, with suppression of erythropoiesis and lymphopoiesis, and marked premalignant expansion of myelopoiesis that eventually results in leukemic transformation. We show that myeloid skewing is dependent on DNA binding by EVI1, which upregulates Spi1, encoding master myeloid regulator PU.1. We show that EVI1 binds to the −14 kb upstream regulatory element (−14kbURE) at Spi1; knockdown of Spi1 dampens the myeloid skewing. Furthermore, deletion of the −14kbURE at Spi1 abrogates the effects of EVI1 on hematopoietic stem cells. These findings support a novel mechanism of leukemogenesis through EVI1 overexpression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.