Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/ motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface-and are precisely equidistant-from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input.key assumption in neuroscience is that the topographical structure of the cerebral cortex provides an organizing principle that constrains its cognitive processes. Recent advances in the field of human connectomics have revealed multiple largescale networks (1-3), each characterized by distinct functional profiles (4). Some are related to basic primary functions, such as movement or perceiving sounds and images; some serve welldocumented, domain-general functions, such as attention or cognitive control (5-8); and some have functional characteristics that remain less well-understood, such as the default-mode network (DMN) (9, 10). Although the topography of these distinct distributed networks has been described using multiple methods (1-3), the reason for their particular spatial relationship and how this constrains their function remain unclear.Advances in mapping local processing streams have revealed spatial gradients that support increasingly abstract levels of representation, often extending along adjacent cortical regions in a stepwise manner (11). In the visual domain, for example, the ventral occipitotemporal object stream transforms simple visual features, coded by neurons in primary visual cortex, into more complex visual descriptions of objects in anterior inferior temporal cortical regions and ultimately, contributes to multimodal semantic representations in the middle temporal cortex and the most anterior temporal cortex that capture the meaning of what we see, hear, and do (12)(13)(14)(15). Similarly, in the prefrontal cortex, a rostral-caudal gradient has been proposed, whereby goals become increasingly abstract in anterior areas more distant from motor cortex...
A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral–caudal axis and a dorsal–ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal–ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information.
Evidence from macaque monkey tracing studies suggests connectivity-based subdivisions within the precuneus, offering predictions for similar subdivisions in the human. Here we present functional connectivity analyses of this region using resting-state functional MRI data collected from both humans and macaque monkeys. Three distinct patterns of functional connectivity were demonstrated within the precuneus of both species, with each subdivision suggesting a discrete functional role: (i) the anterior precuneus, functionally connected with the superior parietal cortex, paracentral lobule, and motor cortex, suggesting a sensorimotor region; (ii) the central precuneus, functionally connected to the dorsolateral prefrontal, dorsomedial prefrontal, and multimodal lateral inferior parietal cortex, suggesting a cognitive/associative region; and (iii) the posterior precuneus, displaying functional connectivity with adjacent visual cortical regions. These functional connectivity patterns were differentiated from the more ventral networks associated with the posterior cingulate, which connected with limbic structures such as the medial temporal cortex, dorsal and ventromedial prefrontal regions, posterior lateral inferior parietal regions, and the lateral temporal cortex. Our findings are consistent with predictions from anatomical tracer studies in the monkey, and provide support that resting-state functional connectivity (RSFC) may in part reflect underlying anatomy. These subdivisions within the precuneus suggest that neuroimaging studies will benefit from treating this region as anatomically (and thus functionally) heterogeneous. Furthermore, the consistency between functional connectivity networks in monkeys and humans provides support for RSFC as a viable tool for addressing crossspecies comparisons of functional neuroanatomy.brain connectivity ͉ functional MRI ͉ posteromedial cortex ͉ resting state C ompared with the lateral surface of the parietal lobe, the functional organization of the medial parietal wall has been relatively neglected. Often referred to as the precuneus, this region has been implicated in high-level cognitive functions, including episodic memory, self-related processing, and aspects of consciousness (1-3). Located in the dorsal portion of the posteromedial cortex (PMC) between the somatosensory and visual cortex, superior to the posterior cingulate and retrosplenial cortex, the precuneus is well situated to play a multimodal, integrative functional role (Fig. 1, Top). Its implication in many higher cognitive functions strongly suggests the presence of functional subdivisions (2, 4), although the neuroimaging literature traditionally has treated it as a homogeneous structure and typically has failed to distinguish between the precuneus and the neighboring posterior cingulate/ retrosplenial cortex.The question of how best to subdivide the human precuneus has been a source of controversy for almost a century. The cytoarchitectonic map of Brodmann (5, 6) as it appears in the atlas of Talairach and T...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.