IntroductionDiscrimination of rheumatoid arthritis (RA) patients from patients with other inflammatory or degenerative joint diseases or healthy individuals purely on the basis of genes differentially expressed in high-throughput data has proven very difficult. Thus, the present study sought to achieve such discrimination by employing a novel unbiased approach using rule-based classifiers.MethodsThree multi-center genome-wide transcriptomic data sets (Affymetrix HG-U133 A/B) from a total of 79 individuals, including 20 healthy controls (control group - CG), as well as 26 osteoarthritis (OA) and 33 RA patients, were used to infer rule-based classifiers to discriminate the disease groups. The rules were ranked with respect to Kiendl’s statistical relevance index, and the resulting rule set was optimized by pruning. The rule sets were inferred separately from data of one of three centers and applied to the two remaining centers for validation. All rules from the optimized rule sets of all centers were used to analyze their biological relevance applying the software Pathway Studio.ResultsThe optimized rule sets for the three centers contained a total of 29, 20, and 8 rules (including 10, 8, and 4 rules for ‘RA’), respectively. The mean sensitivity for the prediction of RA based on six center-to-center tests was 96% (range 90% to 100%), that for OA 86% (range 40% to 100%). The mean specificity for RA prediction was 94% (range 80% to 100%), that for OA 96% (range 83.3% to 100%). The average overall accuracy of the three different rule-based classifiers was 91% (range 80% to 100%). Unbiased analyses by Pathway Studio of the gene sets obtained by discrimination of RA from OA and CG with rule-based classifiers resulted in the identification of the pathogenetically and/or therapeutically relevant interferon-gamma and GM-CSF pathways.ConclusionFirst-time application of rule-based classifiers for the discrimination of RA resulted in high performance, with means for all assessment parameters close to or higher than 90%. In addition, this unbiased, new approach resulted in the identification not only of pathways known to be critical to RA, but also of novel molecules such as serine/threonine kinase 10.
During hematoma formation following injury, an inflammatory reaction ensues as an initial step in the healing process. As granulation tissue matures, revascularization is a prerequisite for successful healing. The hypothesis of this study was that scarless tissue reconstitution in the regenerative bone healing process is dependent on a balanced immune reaction that initiates revasculatory steps. To test this hypothesis, cellular composition and expression profiles of a bone hematoma (regenerative, scarless) was compared with a muscle soft tissue hematoma (healing with a scar) in a sheep model. Upregulation of regulatory T helper cells and anti-inflammatory cytokine expression (IL-10) coincided with an upregulation of angiogenic factors (HIF1α and HIF1α regulated genes) in the regenerative bone hematoma but not in the soft tissue hematoma. These results indicate that the timely termination of inflammation and early onset of revascularization are interdependent and essential for a regenerative healing process. Prolonged pro-inflammatory signaling occurring in a delayed bone-healing model supports the finding that timely termination of inflammation furthers the regenerative process. Differing cellular compositions are due to different cell sources invading the hematoma, determining the ensuing cytokine expression profile and thus paving the path for regenerative healing in bone or the formation of scar tissue in muscle injury.
The impairment of hepatic metabolism due to liver injury has high systemic relevance. However, it is difficult to calculate the impairment of metabolic capacity from a specific pattern of liver damage with conventional techniques. We established an integrated metabolic spatial-temporal model (IM) using hepatic ammonia detoxification as a paradigm. First, a metabolic model (MM) based on mass balancing and mouse liver perfusion data was established to describe ammonia detoxification and its zonation. Next, the MM was combined with a spatial-temporal model simulating liver tissue damage and regeneration after CCl 4 intoxication. The resulting IM simulated and visualized whether, where, and to what extent liver damage compromised ammonia detoxification. It allowed us to enter the extent and spatial patterns of liver damage and then calculate the outflow concentrations of ammonia, glutamine, and urea in the hepatic vein. The model was validated through comparisons with (1) published data for isolated, perfused livers with and without CCl 4 intoxication and (2) a set of in vivo experiments. Using the experimentally determined portal concentrations of ammonia, the model adequately predicted metabolite concentrations over time in the hepatic vein during toxin-induced liver damage and regeneration in rodents. Further simulations, especially in combination with a simplified model of blood circulation with three ammonia-detoxifying compartments, indicated a yet unidentified process of ammonia consumption during liver regeneration and revealed unexpected concomitant changes in amino acid metabolism in the liver and at extrahepatic sites. Conclusion: The IM of hepatic ammonia detoxification considerably improves our understanding of the metabolic impact of liver disease and highlights the importance of integrated modeling approaches on the way toward virtual organisms. (HEPATOLOGY 2014;60:2040-2051
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.