Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid–long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor.
Calcium (Ca2+) dysregulation has been linked to neuronal cell death, including in hereditary retinal degeneration. Ca2+ dysregulation is thought to cause rod and cone photoreceptor cell death. Spatial and temporal heterogeneities in retinal disease models have hampered validation of this hypothesis. We examined the role of Ca2+ in photoreceptor degeneration, assessing the activation pattern of Ca2+‐dependent calpain proteases, generating spatiotemporal maps of the entire retina in the cpfl1 mouse model for primary cone degeneration, and in the rd1 and rd10 models for primary rod degeneration. We used Gaussian process models to distinguish the temporal sequences of degenerative molecular processes from other variability sources.In the rd1 and rd10 models, spatiotemporal pattern of increased calpain activity matched the progression of primary rod degeneration. High calpain activity coincided with activation of the calpain‐2 isoform but not with calpain‐1, suggesting differential roles for both calpain isoforms. Primary rod loss was linked to upregulation of apoptosis‐inducing factor, although only a minute fraction of cells showed activity of the apoptotic marker caspase‐3. After primary rod degeneration concluded, caspase‐3 activation appeared in cones, suggesting apoptosis as the dominant mechanism for secondary cone loss. Gaussian process models highlighted calpain activity as a key event during primary rod photoreceptor cell death. Our data suggest a causal link between Ca2+ dysregulation and primary, nonapoptotic degeneration of photoreceptors and a role for apoptosis in secondary degeneration of cones, highlighting the importance of the spatial and temporal location of key molecular events, which may guide the evaluation of new therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.